Practical solution of the Diophantine equation $y^2 = x(x+2^ap^b)(x-2^ap^b)$
HTML articles powered by AMS MathViewer
- by Konstantinos Draziotis and Dimitrios Poulakis;
- Math. Comp. 75 (2006), 1585-1593
- DOI: https://doi.org/10.1090/S0025-5718-06-01841-2
- Published electronically: March 29, 2006
- PDF | Request permission
Abstract:
Let $p$ be an odd prime and $a$, $b$ positive integers. In this note we prove that the problem of the determination of the integer solutions to the equation $y^2 = x(x+2^ap^b)(x-2^ap^b)$ can be easily reduced to the resolution of the unit equation $u+\sqrt {2}v = 1$ over $\mathbb {Q}(\sqrt {2},\sqrt {p})$. The solutions of the latter equation are given by Wildanger’s algorithm.References
- Michael A. Bennett and Gary Walsh, The Diophantine equation $b^2X^4-dY^2=1$, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3481–3491. MR 1625772, DOI 10.1090/S0002-9939-99-05041-8
- A. Bremner, J. H. Silverman, and N. Tzanakis, Integral points in arithmetic progression on $y^2=x(x^2-n^2)$, J. Number Theory 80 (2000), no. 2, 187–208. MR 1740510, DOI 10.1006/jnth.1999.2430
- Yann Bugeaud, On the size of integer solutions of elliptic equations, Bull. Austral. Math. Soc. 57 (1998), no. 2, 199–206. MR 1617363, DOI 10.1017/S0004972700031592
- Claude Chabauty, Démonstration de quelques lemmes de rehaussement, C. R. Acad. Sci. Paris 217 (1943), 413–415 (French). MR 11571
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- J. H. E. Cohn, The Diophantine equation $x^4-Dy^2=1$. II, Acta Arith. 78 (1997), no. 4, 401–403. MR 1438594, DOI 10.4064/aa-78-4-401-403
- J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992. MR 1201151
- K. Draziotis, Integral solutions of the equation $Y^2 = X^3\pm p^kX$, Math. Comp. (to appear).
- Keqin Feng and Maosheng Xiong, On elliptic curves $y^2=x^3-n^2x$ with rank zero, J. Number Theory 109 (2004), no. 1, 1–26. MR 2098473, DOI 10.1016/j.jnt.2003.12.015
- Josef Gebel and Horst G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over $\mathbf Q$, Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 61–83. MR 1260955, DOI 10.1090/crmp/004/05
- J. Gebel, A. Pethő, and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), no. 2, 171–192. MR 1305199, DOI 10.4064/aa-68-2-171-192
- G. Hanrot, Resolution effective d’equations diophantiennes: algorithmes et applications, These, Universite Bordeaux 1 (1997).
- Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original. MR 600654
- Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911, DOI 10.1007/978-1-4684-0255-1
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817
- L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 249355
- Dimitrios Poulakis, Integer points on algebraic curves with exceptional units, J. Austral. Math. Soc. Ser. A 63 (1997), no. 2, 145–164. MR 1475559
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- N. P. Smart, $S$-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 391–399. MR 1291748, DOI 10.1017/S0305004100072698
- R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), no. 2, 177–196. MR 1291875, DOI 10.4064/aa-67-2-177-196
- N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), no. 2, 99–132. MR 987566, DOI 10.1016/0022-314X(89)90014-0
- K. Wildanger, Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern, J. Number Theory 82 (2000), no. 2, 188–224 (German, with English summary). MR 1761620, DOI 10.1006/jnth.1999.2414
- http://magma.maths.usyd.edu.au/magma/.
Bibliographic Information
- Konstantinos Draziotis
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Email: drazioti@math.auth.gr
- Dimitrios Poulakis
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Email: poulakis@math.auth.gr
- Received by editor(s): May 27, 2005
- Received by editor(s) in revised form: June 18, 2005
- Published electronically: March 29, 2006
- Additional Notes: The research of the first author was supported by the Hellenic State Scholarships Foundation, I.K.Y
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1585-1593
- MSC (2000): Primary 11Y50; Secondary 11D25, 11G05
- DOI: https://doi.org/10.1090/S0025-5718-06-01841-2
- MathSciNet review: 2219047