Practical solution of the Diophantine equation
Authors:
Konstantinos Draziotis and Dimitrios Poulakis
Journal:
Math. Comp. 75 (2006), 1585-1593
MSC (2000):
Primary 11Y50; Secondary 11D25, 11G05
DOI:
https://doi.org/10.1090/S0025-5718-06-01841-2
Published electronically:
March 29, 2006
MathSciNet review:
2219047
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be an odd prime and
,
positive integers. In this note we prove that the problem of the determination of the integer solutions to the equation
can be easily reduced to the resolution of the unit equation
over
. The solutions of the latter equation are given by Wildanger's algorithm.
- 1. Michael A. Bennett and Gary Walsh, The Diophantine equation 𝑏²𝑋⁴-𝑑𝑌²=1, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3481–3491. MR 1625772, https://doi.org/10.1090/S0002-9939-99-05041-8
- 2. A. Bremner, J. H. Silverman, and N. Tzanakis, Integral points in arithmetic progression on 𝑦²=𝑥(𝑥²-𝑛²), J. Number Theory 80 (2000), no. 2, 187–208. MR 1740510, https://doi.org/10.1006/jnth.1999.2430
- 3. Yann Bugeaud, On the size of integer solutions of elliptic equations, Bull. Austral. Math. Soc. 57 (1998), no. 2, 199–206. MR 1617363, https://doi.org/10.1017/S0004972700031592
- 4. Claude Chabauty, Démonstration de quelques lemmes de rehaussement, C. R. Acad. Sci. Paris 217 (1943), 413–415 (French). MR 11571
- 5. Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
- 6. J. H. E. Cohn, The Diophantine equation 𝑥⁴-𝐷𝑦²=1. II, Acta Arith. 78 (1997), no. 4, 401–403. MR 1438594, https://doi.org/10.4064/aa-78-4-401-403
- 7. J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992. MR 1201151
- 8.
K. Draziotis, Integral solutions of the equation
, Math. Comp. (to appear).
- 9. Keqin Feng and Maosheng Xiong, On elliptic curves 𝑦²=𝑥³-𝑛²𝑥 with rank zero, J. Number Theory 109 (2004), no. 1, 1–26. MR 2098473, https://doi.org/10.1016/j.jnt.2003.12.015
- 10. Josef Gebel and Horst G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over 𝐐, Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 61–83. MR 1260955
- 11. J. Gebel, A. Pethő, and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), no. 2, 171–192. MR 1305199, https://doi.org/10.4064/aa-68-2-171-192
- 12. G. Hanrot, Resolution effective d'equations diophantiennes: algorithmes et applications, These, Universite Bordeaux 1 (1997).
- 13. Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original. MR 600654
- 14. Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911
- 15. Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817
- 16. L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 0249355
- 17. Dimitrios Poulakis, Integer points on algebraic curves with exceptional units, J. Austral. Math. Soc. Ser. A 63 (1997), no. 2, 145–164. MR 1475559
- 18. Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210
- 19. N. P. Smart, 𝑆-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 391–399. MR 1291748, https://doi.org/10.1017/S0305004100072698
- 20. R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), no. 2, 177–196. MR 1291875, https://doi.org/10.4064/aa-67-2-177-196
- 21. N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), no. 2, 99–132. MR 987566, https://doi.org/10.1016/0022-314X(89)90014-0
- 22. K. Wildanger, Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern, J. Number Theory 82 (2000), no. 2, 188–224 (German, with English summary). MR 1761620, https://doi.org/10.1006/jnth.1999.2414
- 23. http://magma.maths.usyd.edu.au/magma/.
Retrieve articles in Mathematics of Computation with MSC (2000): 11Y50, 11D25, 11G05
Retrieve articles in all journals with MSC (2000): 11Y50, 11D25, 11G05
Additional Information
Konstantinos Draziotis
Affiliation:
Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Email:
drazioti@math.auth.gr
Dimitrios Poulakis
Affiliation:
Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Email:
poulakis@math.auth.gr
DOI:
https://doi.org/10.1090/S0025-5718-06-01841-2
Received by editor(s):
May 27, 2005
Received by editor(s) in revised form:
June 18, 2005
Published electronically:
March 29, 2006
Additional Notes:
The research of the first author was supported by the Hellenic State Scholarships Foundation, I.K.Y
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.