Integer points on the curve $Y^{2}=X^{3}\pm p^{k}X$
HTML articles powered by AMS MathViewer
- by Konstantinos A. Draziotis;
- Math. Comp. 75 (2006), 1493-1505
- DOI: https://doi.org/10.1090/S0025-5718-06-01852-7
- Published electronically: April 6, 2006
- PDF | Request permission
Abstract:
We completely solve diophantine equations of the form $Y^{2}=X^{3}\pm p^{k}X,$ where $k$ is a positive integer, using a reduction to some quartic elliptic equations, which can be solved with well known methods.References
- Michael A. Bennett, On the representation of unity by binary cubic forms, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1507–1534. MR 1806730, DOI 10.1090/S0002-9947-00-02658-1
- Jian Hua Chen and Paul Voutier, Complete solution of the Diophantine equation $X^2+1=dY^4$ and a related family of quartic Thue equations, J. Number Theory 62 (1997), no. 1, 71–99. MR 1430002, DOI 10.1006/jnth.1997.2018
- J. H. E. Cohn, The Diophantine equation $y^{2}=Dx^{4}+1$. III, Math. Scand. 42 (1978), no. 2, 180–188. MR 512268, DOI 10.7146/math.scand.a-11746
- J. H. E. Cohn, The Diophantine equation $x^4+1=Dy^2$, Math. Comp. 66 (1997), no. 219, 1347–1351. MR 1415800, DOI 10.1090/S0025-5718-97-00851-X
- Kevin R. Coombes and David R. Grant, On heterogeneous spaces, J. London Math. Soc. (2) 40 (1989), no. 3, 385–397. MR 1053609, DOI 10.1112/jlms/s2-40.3.385
- Sinnou David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France (N.S.) 62 (1995), iv+143 (French, with English and French summaries). MR 1385175
- J. Gebel, A. Pethő, and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), no. 2, 171–192. MR 1305199, DOI 10.4064/aa-68-2-171-192
- Genocchi, Sur l’impossibilite de quelques egalites doubles, C. R. Acad.Sci. Paris, 78 (1874), 423-436.
- Aleksander Grytczuk, Florian Luca, and Marek Wójtowicz, The negative Pell equation and Pythagorean triples, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 6, 91–94. MR 1769976
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817
- Wilhelm Ljunggren, Zur Theorie der Gleichung $x^2+1=Dy^4$, Avh. Norske Vid.-Akad. Oslo I 1942 (1942), no. 5, 27 (German). MR 16375
- —, Einige Eigenschften der Einheiten reel Quadratischer und rein-bi-quadratischer Zahlkorper. Skr. Norske Vid. Akad. Oslo I, v.1936, no.12.
- F. Luca and P. G. Walsh, A generalization of a theorem of Cohn on the equation $x^3-Ny^2=\pm 1$, Rocky Mountain J. Math. 31 (2001), no. 2, 503–509. MR 1840950, DOI 10.1216/rmjm/1020171571
- L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 249355
- L. J. Mordell, The Diophantine equation $y^{2}=Dx^{4}+1$, J. London Math. Soc. 39 (1964), 161–164. MR 162761, DOI 10.1112/jlms/s1-39.1.161
- Dimitrios Poulakis, A simple method for solving the Diophantine equation $Y^2=X^4+aX^3+bX^2+cX+d$, Elem. Math. 54 (1999), no. 1, 32–36 (English, with German summary). MR 1669371, DOI 10.1007/s000170050053
- D. Poulakis and P. G. Walsh, A note on the Diophantine equation $X^2-dY^4=1$ with prime discriminant, C. R. Math. Acad. Sci. Soc. R. Can. 27 (2005), no. 2, 54–57 (English, with English and French summaries). MR 2142959
- H. E. Rose, A course in number theory, 2nd ed., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1352868
- Pierre Samuel, Résultats élémentaires sur certaines équations diophantiennes, J. Théor. Nombres Bordeaux 14 (2002), no. 2, 629–646 (French, with English and French summaries). MR 2040698
- A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185–208; erratum 5 (1958), 259 (French). MR 106202, DOI 10.4064/aa-4-3-185-208
- W. Sierpiński, Elementary theory of numbers, 2nd ed., North-Holland Mathematical Library, vol. 31, North-Holland Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw, 1988. Edited and with a preface by Andrzej Schinzel. MR 930670
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- N. P. Smart, $S$-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 391–399. MR 1291748, DOI 10.1017/S0305004100072698
- R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), no. 2, 177–196. MR 1291875, DOI 10.4064/aa-67-2-177-196
- Roel J. Stroeker and Nikos Tzanakis, On the elliptic logarithm method for elliptic Diophantine equations: reflections and an improvement, Experiment. Math. 8 (1999), no. 2, 135–149. MR 1700575
- A. Togbe, P. M. Voutier, and P. G. Walsh, Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$, Acta Arith. 120 (2005), no. 1, 39–58. MR 2189717, DOI 10.4064/aa120-1-3
- N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), no. 2, 99–132. MR 987566, DOI 10.1016/0022-314X(89)90014-0
- Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451, DOI 10.1007/BFb0072989
- P. G. Walsh, Diophantine equations of the form $aX^4-bY^2=\pm 1$, Algebraic number theory and Diophantine analysis (Graz, 1998) de Gruyter, Berlin, 2000, pp. 531–554. MR 1770484
- Gary Walsh, A note on a theorem of Ljunggren and the Diophantine equations $x^2-kxy^2+y^4=1,4$, Arch. Math. (Basel) 73 (1999), no. 2, 119–125. MR 1703679, DOI 10.1007/s000130050376
- Don Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), no. 177, 425–436. MR 866125, DOI 10.1090/S0025-5718-1987-0866125-3
Bibliographic Information
- Konstantinos A. Draziotis
- Affiliation: 42 G. Passalidi St., Thessaloniki 54453, Greece
- Email: drazioti@gmail.com
- Received by editor(s): December 2, 2003
- Received by editor(s) in revised form: July 29, 2005
- Published electronically: April 6, 2006
- Additional Notes: The research of this author was supported by the Hellenic State Scholarships Foundation-I.K.Y
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1493-1505
- MSC (2000): Primary 11D25, 11G05
- DOI: https://doi.org/10.1090/S0025-5718-06-01852-7
- MathSciNet review: 2219040