The group of Weierstrass points of a plane quartic with at least eight hyperflexes
HTML articles powered by AMS MathViewer
- by Martine Girard;
- Math. Comp. 75 (2006), 1561-1583
- DOI: https://doi.org/10.1090/S0025-5718-06-01853-9
- Published electronically: May 1, 2006
- PDF | Request permission
Abstract:
The group generated by the Weierstrass points of a smooth curve in its Jacobian is an intrinsic invariant of the curve. We determine this group for all smooth quartics with eight hyperflexes or more. Since Weierstrass points are closely related to moduli spaces of curves, as an application, we get bounds on both the rank and the torsion part of this group for a generic quartic having a fixed number of hyperflexes in the moduli space $\mathcal {M}_{3}$ of curves of genus 3.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- W. Bosma and J. Cannon, editors. Handbook of Magma Functions, Sydney, 2002. http://magma.maths.usyd.edu.au/.
- Martine Girard, Géométrie du groupe des points de Weierstrass d’une quartique lisse, J. Number Theory 94 (2002), no. 1, 103–135 (French, with English and French summaries). MR 1904965, DOI 10.1006/jnth.2001.2732
- Martine Girard, Groupe des points de Weierstrass sur une famille de quartiques lisses, Acta Arith. 105 (2002), no. 4, 305–321 (French). MR 1932565, DOI 10.4064/aa105-4-1
- M. Girard. Code for computing heights of elliptic curves on number fields, http://www.institut.math.jussieu.fr/~girard/magma/.
- M. Girard. Group of Weierstrass points of a plane quartic with eight hyperflexes or more. Technical report of the Mathematical Institute, Leiden University, June 2002. http://www.math.leidenuniv.nl/reports/2002-14.shtml.
- Martine Girard and Pavlos Tzermias, Group generated by the Weierstrass points of a plane quartic, Proc. Amer. Math. Soc. 130 (2002), no. 3, 667–672. MR 1866017, DOI 10.1090/S0002-9939-01-06193-7
- Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR 1745599, DOI 10.1007/978-1-4612-1210-2
- John Hamal Hubbard, Sur les sections analytiques de la courbe universelle de Teichmüller, Mem. Amer. Math. Soc. 4 (1976), no. 166, ix+137. MR 430321, DOI 10.1090/memo/0166
- Matthew J. Klassen and Edward F. Schaefer, Arithmetic and geometry of the curve $y^3+1=x^4$, Acta Arith. 74 (1996), no. 3, 241–257. MR 1373711, DOI 10.4064/aa-74-3-241-257
- Dan Laksov and Anders Thorup, Weierstrass points and gap sequences for families of curves, Ark. Mat. 32 (1994), no. 2, 393–422. MR 1318539, DOI 10.1007/BF02559578
- Despina T. Prapavessi, On the Jacobian of the Klein curve, Proc. Amer. Math. Soc. 122 (1994), no. 4, 971–978. MR 1212286, DOI 10.1090/S0002-9939-1994-1212286-1
- David E. Rohrlich, Points at infinity on the Fermat curves, Invent. Math. 39 (1977), no. 2, 95–127. MR 441978, DOI 10.1007/BF01390104
- Joseph H. Silverman, Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983), 197–211. MR 703488, DOI 10.1515/crll.1983.342.197
- Alexius Maria Vermeulen, Weierstrass points of weight two on curves of genus three, Universiteit van Amsterdam, Amsterdam, 1983. Dissertation, University of Amsterdam, Amsterdam, 1983; With a Dutch summary. MR 715084
Bibliographic Information
- Martine Girard
- Affiliation: Universiteit Leiden, Mathematisch Instituut, 2300 R. A. Leiden, The Netherlands
- Address at time of publication: School of Mathematics and Statistics, The University of Sydney, New South Wales, NSW 2006, Australia
- Email: girard@maths.usyd.edu.au
- Received by editor(s): March 6, 2003
- Received by editor(s) in revised form: April 1, 2005
- Published electronically: May 1, 2006
- Additional Notes: This research was carried out while the author was a postdoctoral fellow at Leiden University within the European Research Training Network Galois Theory and Explicit Methods in Arithmetic.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1561-1583
- MSC (2000): Primary 11G30, 14H55, 14Q05; Secondary 14H40
- DOI: https://doi.org/10.1090/S0025-5718-06-01853-9
- MathSciNet review: 2219046