Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions
HTML articles powered by AMS MathViewer
- by Sotirios E. Notaris;
- Math. Comp. 75 (2006), 1217-1231
- DOI: https://doi.org/10.1090/S0025-5718-06-01859-X
- Published electronically: May 1, 2006
- PDF | Request permission
Abstract:
We evaluate explicitly the integrals $\int _{-1}^{1}\pi _{n}(t)/(r\mp t)dt,\ |r|\neq 1$, with the $\pi _{n}$ being any one of the four Chebyshev polynomials of degree $n$. These integrals are subsequently used in order to obtain error bounds for interpolatory quadrature formulae with Chebyshev abscissae, when the function to be integrated is analytic in a domain containing $[-1,1]$ in its interior.References
- G. Akrivis, Fehlerabschätzungen bei der numerischen Integration in einer und mehreren Dimensionen, Doctoral Dissertation, Ludwig-Maximilians-Universität München, 1982.
- Robert G. Bartle, The elements of real analysis, 2nd ed., John Wiley & Sons, New York-London-Sydney, 1976. MR 393369
- N. K. Basu, Error estimates for a Chebyshev quadrature method, Math. Comp. 24 (1970), 863–867. MR 277111, DOI 10.1090/S0025-5718-1970-0277111-6
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. MR 760629
- Walter Gautschi, Remainder estimates for analytic functions, Numerical integration (Bergen, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 357, Kluwer Acad. Publ., Dordrecht, 1992, pp. 133–145. MR 1198903
- G. Hämmerlin, Fehlerabschätzung bei numerischer Integration nach Gauss, Methoden und Verfahren der mathematischen Physik, Band 6, B. I. Hochschultaschenbücher, No. 725, Bibliographisches Inst., Mannheim-Vienna-Zürich, 1972, pp. 153–163 (German, with English summary). MR 359277
- Sotirios E. Notaris, Interpolatory quadrature formulae with Chebyshev abscissae, Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), 2001, pp. 507–517. MR 1858308, DOI 10.1016/S0377-0427(00)00672-5
Bibliographic Information
- Sotirios E. Notaris
- Affiliation: Department of Mathematics, University of Athens, Panepistemiopolis, 15784 Zografou, Greece
- Email: notaris@math.uoa.gr
- Received by editor(s): May 13, 2004
- Received by editor(s) in revised form: October 3, 2004
- Published electronically: May 1, 2006
- Additional Notes: This work was supported in part by a grant from the Research Committee of the University of Athens, Greece, and in part by a “Pythagoras” O.P. Education grant to the University of Athens from the Ministry of National Education, Greece, and the European Union.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1217-1231
- MSC (2000): Primary 33C45, 65D32
- DOI: https://doi.org/10.1090/S0025-5718-06-01859-X
- MathSciNet review: 2219026