Numerical approximations of the 10-moment Gaussian closure
HTML articles powered by AMS MathViewer
- by Christophe Berthon;
- Math. Comp. 75 (2006), 1809-1831
- DOI: https://doi.org/10.1090/S0025-5718-06-01860-6
- Published electronically: June 6, 2006
- PDF | Request permission
Abstract:
We propose a numerical scheme to approximate the weak solutions of the 10-moment Gaussian closure. The moment Gaussian closure for gas dynamics is governed by a conservative hyperbolic system supplemented by entropy inequalities whose solutions satisfy positiveness of density and tensorial pressure. We consider a Suliciu-type relaxation numerical scheme to approximate the solutions. These methods are proved to satisfy all the expected positiveness properties and all the discrete entropy inequalities. The scheme is illustrated by several numerical experiments.References
- Denise Aregba-Driollet and Roberto Natalini, Convergence of relaxation schemes for conservation laws, Appl. Anal. 61 (1996), no. 1-2, 163–193. MR 1625520, DOI 10.1080/00036819608840453
- Michaël Baudin, Christophe Berthon, Frédéric Coquel, Roland Masson, and Quang Huy Tran, A relaxation method for two-phase flow models with hydrodynamic closure law, Numer. Math. 99 (2005), no. 3, 411–440. MR 2117734, DOI 10.1007/s00211-004-0558-1
- Christophe Berthon, Inégalités d’entropie pour un schéma de relaxation, C. R. Math. Acad. Sci. Paris 340 (2005), no. 1, 63–68 (French, with English and French summaries). MR 2112043, DOI 10.1016/j.crma.2004.10.008
- C. Berthon, B. Braconnier, and B. Nkonga, Numerical approximation of a degenerated non conservative multifluid model: relaxation scheme, Int. J. Numer. Methods Fluids, 48 (2005), No.1, 85–90.
- C. Berthon, M. Breuss, and M.-O. Titeux, A relaxation scheme for the approximation of the pressureless Euler equations, Numer. Methods Partial Diff. Eq., 22 (2006), 484–505.
- C. Berthon and B. Dubroca, work in preparation.
- F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models, Numer. Math. 94 (2003), no. 4, 623–672. MR 1990588, DOI 10.1007/s00211-002-0426-9
- C. Chalons and F. Coquel, Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes, preprint.
- Gui Qiang Chen, C. David Levermore, and Tai-Ping Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), no. 6, 787–830. MR 1280989, DOI 10.1002/cpa.3160470602
- F. Coquel, E. Godlewski, B. Perthame, A. In, and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems, Godunov methods (Oxford, 1999) Kluwer/Plenum, New York, 2001, pp. 179–188. MR 1963591
- Frédéric Coquel and Benoît Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. Numer. Anal. 35 (1998), no. 6, 2223–2249. MR 1655844, DOI 10.1137/S0036142997318528
- B. Dubroca, M. Tchong, P. Charrier, V.T. Tikhonchuk, and P.-M. Morreeuw, Magnetic field generation in plasma due to anisotropic laser heating, J. Phys. Plasma, accepted.
- T. I. Gombosi, C. P. T. Groth, P. L. Roe, and S. L. Brown, 35-Moment closure for rarefied gases: Derivation, transport equations, and wave structure, preprint.
- Edwige Godlewski and Pierre-Arnaud Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. MR 1410987, DOI 10.1007/978-1-4612-0713-9
- Harold Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math. 2 (1949), 331–407. MR 33674, DOI 10.1002/cpa.3160020403
- Amiram Harten, Peter D. Lax, and Bram van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), no. 1, 35–61. MR 693713, DOI 10.1137/1025002
- Shi Jin and Zhou Ping Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), no. 3, 235–276. MR 1322811, DOI 10.1002/cpa.3160480303
- Randall J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. MR 1925043, DOI 10.1017/CBO9780511791253
- C. David Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys. 83 (1996), no. 5-6, 1021–1065. MR 1392419, DOI 10.1007/BF02179552
- C. David Levermore and William J. Morokoff, The Gaussian moment closure for gas dynamics, SIAM J. Appl. Math. 59 (1999), no. 1, 72–96. MR 1641154, DOI 10.1137/S0036139996299236
- Richard Liska and Burton Wendroff, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM J. Sci. Comput. 25 (2003), no. 3, 995–1017. MR 2046122, DOI 10.1137/S1064827502402120
- Tai-Ping Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1987), no. 1, 153–175. MR 872145, DOI 10.1007/BF01210707
- Roberto Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math. 49 (1996), no. 8, 795–823. MR 1391756, DOI 10.1002/(SICI)1097-0312(199608)49:8<795::AID-CPA2>3.0.CO;2-3
- W.F. Noh, Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. Comput. Phys., 72 (1987), 78–120.
- I. Suliciu, Energy estimates in rate-type thermo-viscoplasticity, Int. J. Plast., 14 (1998), 227–244.
- G. B. Whitham, Linear and nonlinear waves, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 483954
Bibliographic Information
- Christophe Berthon
- Affiliation: MAB, UMR 5466 CNRS, Université Bordeaux 1, 351 cours de la libération, 33400 Talence, France
- Email: Christophe.Berthon@math.u-bordeaux1.fr
- Received by editor(s): August 4, 2004
- Received by editor(s) in revised form: September 13, 2005
- Published electronically: June 6, 2006
- © Copyright 2006 American Mathematical Society
- Journal: Math. Comp. 75 (2006), 1809-1831
- MSC (2000): Primary 65M99, 76N15; Secondary 76P05
- DOI: https://doi.org/10.1090/S0025-5718-06-01860-6
- MathSciNet review: 2240636