Iterated function systems, Ruelle operators, and invariant projective measures
HTML articles powered by AMS MathViewer
- by Dorin Ervin Dutkay and Palle E. T. Jorgensen;
- Math. Comp. 75 (2006), 1931-1970
- DOI: https://doi.org/10.1090/S0025-5718-06-01861-8
- Published electronically: May 31, 2006
- PDF | Request permission
Abstract:
We introduce a Fourier-based harmonic analysis for a class of discrete dynamical systems which arise from Iterated Function Systems. Our starting point is the following pair of special features of these systems. (1) We assume that a measurable space $X$ comes with a finite-to-one endomorphism $r\colon X\rightarrow X$ which is onto but not one-to-one. (2) In the case of affine Iterated Function Systems (IFSs) in $\mathbb {R}^d$, this harmonic analysis arises naturally as a spectral duality defined from a given pair of finite subsets $B, L$ in $\mathbb {R}^d$ of the same cardinality which generate complex Hadamard matrices.
Our harmonic analysis for these iterated function systems (IFS) $(X, \mu )$ is based on a Markov process on certain paths. The probabilities are determined by a weight function $W$ on $X$. From $W$ we define a transition operator $R_W$ acting on functions on $X$, and a corresponding class $H$ of continuous $R_W$-harmonic functions. The properties of the functions in $H$ are analyzed, and they determine the spectral theory of $L^2(\mu )$. For affine IFSs we establish orthogonal bases in $L^2(\mu )$. These bases are generated by paths with infinite repetition of finite words. We use this in the last section to analyze tiles in $\mathbb {R}^d$.
References
- Akram Aldroubi, Qiyu Sun, and Wai-Shing Tang, Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces, Constr. Approx. 20 (2004), no. 2, 173–189. MR 2036639, DOI 10.1007/s00365-003-0539-0
- Akram Aldroubi, David Larson, Wai-Shing Tang, and Eric Weber, Geometric aspects of frame representations of abelian groups, Trans. Amer. Math. Soc. 356 (2004), no. 12, 4767–4786. MR 2084397, DOI 10.1090/S0002-9947-04-03679-7
- Viviane Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1793194, DOI 10.1142/9789812813633
- Krishna B. Athreya and Peter E. Ney, Branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 196, Springer-Verlag, New York-Heidelberg, 1972. MR 373040, DOI 10.1007/978-3-642-65371-1
- Stefan Bildea, Dorin Ervin Dutkay, and Gabriel Picioroaga, MRA super-wavelets, New York J. Math. 11 (2005), 1–19. MR 2154344
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- Ola Bratteli, Palle E. T. Jorgensen, and Geoffrey L. Price, Endomorphisms of ${\scr B}({\scr H})$, Quantization, nonlinear partial differential equations, and operator algebra (Cambridge, MA, 1994) Proc. Sympos. Pure Math., vol. 59, Amer. Math. Soc., Providence, RI, 1996, pp. 93–138. MR 1392986, DOI 10.1090/pspum/059/1392986
- Ola Bratteli and Palle E. T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc. 139 (1999), no. 663, x+89. MR 1469149, DOI 10.1090/memo/0663
- Ola Bratteli and Palle Jorgensen, Wavelets through a looking glass, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2002. The world of the spectrum. MR 1913212, DOI 10.1007/978-0-8176-8144-9
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). MR 194595, DOI 10.1007/BF02591353
- Xia Chen, Limit theorems for functionals of ergodic Markov chains with general state space, Mem. Amer. Math. Soc. 139 (1999), no. 664, xiv+203. MR 1491814, DOI 10.1090/memo/0664
- Jean-Pierre Conze and Albert Raugi, Fonctions harmoniques pour un opérateur de transition et applications, Bull. Soc. Math. France 118 (1990), no. 3, 273–310 (French, with English summary). MR 1078079, DOI 10.24033/bsmf.2148
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 457675, DOI 10.1007/BFb0082364
- D.E. Dutkay, P.E.T. Jorgensen, Wavelets on fractals, Rev. Mat. Iberoamericana, to appear, http://arXiv.org/abs/math.CA/0305443.
- D.E. Dutkay, P.E.T. Jorgensen, Martingales, endomorphisms, and covariant systems of operators in Hilbert space, preprint, 2004, http://arxiv.org/abs/math.CA/0407330 .
- D.E. Dutkay, P.E.T. Jorgensen, Disintegration of projective measures, Proc. Amer. Math. Soc., to appear, http://arxiv.org/abs/math.CA/0408151.
- Dorin Ervin Dutkay and Palle E. T. Jorgensen, Hilbert spaces of martingales supporting certain substitution-dynamical systems, Conform. Geom. Dyn. 9 (2005), 24–45. MR 2133804, DOI 10.1090/S1088-4173-05-00135-9
- Bent Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101–121. MR 470754, DOI 10.1016/0022-1236(74)90072-x
- Richard F. Gundy, Two remarks concerning wavelets: Cohen’s criterion for low-pass filters and Meyer’s theorem on linear independence, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 249–258. MR 1738093, DOI 10.1090/conm/247/03805
- Richard F. Gundy, Low-pass filters, martingales, and multiresolution analyses, Appl. Comput. Harmon. Anal. 9 (2000), no. 2, 204–219. MR 1777126, DOI 10.1006/acha.2000.0320
- Richard F. Gundy and Kazaros Kazarian, Stopping times and local convergence for spline wavelet expansions, SIAM J. Math. Anal. 31 (2000), no. 3, 561–573. MR 1741041, DOI 10.1137/S0036141097327392
- Aimo Hinkkanen, Gaven J. Martin, and Volker Mayer, Local dynamics of uniformly quasiregular mappings, Math. Scand. 95 (2004), no. 1, 80–100. MR 2091483, DOI 10.7146/math.scand.a-14450
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- C. T. Ionescu Tulcea and G. Marinescu, Théorie ergodique pour des classes d’opérations non complètement continues, Ann. of Math. (2) 52 (1950), 140–147 (French). MR 37469, DOI 10.2307/1969514
- Alex Iosevich and Steen Pedersen, Spectral and tiling properties of the unit cube, Internat. Math. Res. Notices 16 (1998), 819–828. MR 1643694, DOI 10.1155/S1073792898000506
- Palle E. T. Jørgensen, Spectral theory of finite volume domains in $\textbf {R}^{n}$, Adv. in Math. 44 (1982), no. 2, 105–120. MR 658536, DOI 10.1016/0001-8708(82)90001-9
- P.E.T. Jorgensen, Analysis and Probability: Wavelets, Signals, Fractals, monograph manuscript, book to be published.
- Palle E. T. Jorgensen, Measures in wavelet decompositions, Adv. in Appl. Math. 34 (2005), no. 3, 561–590. MR 2123549, DOI 10.1016/j.aam.2004.11.002
- Palle E. T. Jorgensen and Steen Pedersen, Spectral theory for Borel sets in $\textbf {R}^n$ of finite measure, J. Funct. Anal. 107 (1992), no. 1, 72–104. MR 1165867, DOI 10.1016/0022-1236(92)90101-N
- Palle E. T. Jorgensen and Steen Pedersen, Group-theoretic and geometric properties of multivariable Fourier series, Exposition. Math. 11 (1993), no. 4, 309–329. MR 1240363
- P. E. T. Jorgensen and S. Pedersen, Harmonic analysis of fractal measures, Constr. Approx. 12 (1996), no. 1, 1–30. MR 1389918, DOI 10.1007/s003659900001
- Palle E. T. Jorgensen and Steen Pedersen, Dense analytic subspaces in fractal $L^2$-spaces, J. Anal. Math. 75 (1998), 185–228. MR 1655831, DOI 10.1007/BF02788699
- Palle E. T. Jorgensen and Steen Pedersen, Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl. 5 (1999), no. 4, 285–302. MR 1700084, DOI 10.1007/BF01259371
- Shizuo Kakutani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), 214–224. MR 23331, DOI 10.2307/1969123
- Izabella Łaba and Yang Wang, On spectral Cantor measures, J. Funct. Anal. 193 (2002), no. 2, 409–420. MR 1929508, DOI 10.1006/jfan.2001.3941
- Jeffrey C. Lagarias, James A. Reeds, and Yang Wang, Orthonormal bases of exponentials for the $n$-cube, Duke Math. J. 103 (2000), no. 1, 25–37. MR 1758237, DOI 10.1215/S0012-7094-00-10312-2
- J. C. Lagarias and P. W. Shor, Cube-tilings of $\textbf {R}^n$ and nonlinear codes, Discrete Comput. Geom. 11 (1994), no. 4, 359–391. MR 1273224, DOI 10.1007/BF02574014
- Jeffrey C. Lagarias and Yang Wang, Integral self-affine tiles in $\textbf {R}^n$. II. Lattice tilings, J. Fourier Anal. Appl. 3 (1997), no. 1, 83–102. MR 1428817, DOI 10.1007/s00041-001-4051-2
- Jeffrey C. Lagarias and Yang Wang, Orthogonality criteria for compactly supported refinable functions and refinable function vectors, J. Fourier Anal. Appl. 6 (2000), no. 2, 153–170. MR 1754012, DOI 10.1007/BF02510658
- Ka-Sing Lau, Mang-Fai Ma, and Jianrong Wang, On some sharp regularity estimations of $L^2$-scaling functions, SIAM J. Math. Anal. 27 (1996), no. 3, 835–864. MR 1382836, DOI 10.1137/0527045
- Ka-Sing Lau, Jianrong Wang, and Cho-Ho Chu, Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures, Studia Math. 117 (1995), no. 1, 1–28. MR 1367690, DOI 10.4064/sm-117-1-1-28
- Wayne M. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases, J. Math. Phys. 32 (1991), no. 1, 57–61. MR 1083085, DOI 10.1063/1.529093
- Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, DOI 10.1007/BF02584743
- R. Daniel Mauldin and Mariusz Urbański, Graph directed Markov systems, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, 2003. Geometry and dynamics of limit sets. MR 2003772, DOI 10.1017/CBO9780511543050
- R. D. Nussbaum and S. M. Verduyn Lunel, Generalizations of the Perron-Frobenius theorem for nonlinear maps, Mem. Amer. Math. Soc. 138 (1999), no. 659, viii+98. MR 1470912, DOI 10.1090/memo/0659
- S. Richter and R. F. Werner, Ergodicity of quantum cellular automata, J. Statist. Phys. 82 (1996), no. 3-4, 963–998. MR 1372433, DOI 10.1007/BF02179798
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- David Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys. 125 (1989), no. 2, 239–262. MR 1016871, DOI 10.1007/BF01217908
- Jennifer Seberry and Mieko Yamada, Hadamard matrices, sequences, and block designs, Contemporary design theory, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992, pp. 431–560. MR 1178508
- Boris Solomyak, On the random series $\sum \pm \lambda ^n$ (an Erdős problem), Ann. of Math. (2) 142 (1995), no. 3, 611–625. MR 1356783, DOI 10.2307/2118556
- Robert S. Strichartz, Remarks on: “Dense analytic subspaces in fractal $L^2$-spaces” [J. Anal. Math. 75 (1998), 185–228; MR1655831 (2000a:46045)] by P. E. T. Jorgensen and S. Pedersen, J. Anal. Math. 75 (1998), 229–231. MR 1655832, DOI 10.1007/BF02788700
- Robert S. Strichartz, Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math. 81 (2000), 209–238. MR 1785282, DOI 10.1007/BF02788990
- R.S. Strichartz, Convergence of mock Fourier series, Duke Math. J., to appear.
- Peter Walters, Ruelle’s operator theorem and $g$-measures, Trans. Amer. Math. Soc. 214 (1975), 375–387. MR 412389, DOI 10.1090/S0002-9947-1975-0412389-8
- R.F. Werner, Unitary matrices with entries of equal modulus, preprint 1993, Universität Osnabruck.
- Masaya Yamaguti, Masayoshi Hata, and Jun Kigami, Mathematics of fractals, Translations of Mathematical Monographs, vol. 167, American Mathematical Society, Providence, RI, 1997. Translated from the 1993 Japanese original by Kiki Hudson. MR 1471705, DOI 10.1090/mmono/167
- K\B{o}saku Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the sixth (1980) edition. MR 1336382, DOI 10.1007/978-3-642-61859-8
Bibliographic Information
- Dorin Ervin Dutkay
- Affiliation: Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd, Piscataway, New Jersey 08854-8019
- MR Author ID: 608228
- Email: ddutkay@math.rutgers.edu
- Palle E. T. Jorgensen
- Affiliation: Department of Mathematics, The University of Iowa, 14 MacLean Hall, Iowa City, Iowa 52242-1419
- MR Author ID: 95800
- ORCID: 0000-0003-2681-5753
- Email: jorgen@math.uiowa.edu
- Received by editor(s): January 5, 2005
- Received by editor(s) in revised form: June 16, 2005
- Published electronically: May 31, 2006
- Additional Notes: This research was supported in part by the National Science Foundation DMS-0139473 (FRG)
- © Copyright 2006 American Mathematical Society
- Journal: Math. Comp. 75 (2006), 1931-1970
- MSC (2000): Primary 28A80, 31C20, 37F20, 39B12, 41A63, 42C40, 47D07, 60G42, 60J45
- DOI: https://doi.org/10.1090/S0025-5718-06-01861-8
- MathSciNet review: 2240643