Continuous-time Kreiss resolvent condition on infinite-dimensional spaces
HTML articles powered by AMS MathViewer
- by Tatjana Eisner and Hans Zwart;
- Math. Comp. 75 (2006), 1971-1985
- DOI: https://doi.org/10.1090/S0025-5718-06-01862-X
- Published electronically: July 10, 2006
- PDF | Request permission
Abstract:
Given the infinitesimal generator $A$ of a $C_0$-semigroup on the Banach space $X$ which satisfies the Kreiss resolvent condition, i.e., there exists an $M>0$ such that $\| (sI-A)^{-1}\| \leq \frac {M}{\mathrm {Re}(s)}$ for all complex $s$ with positive real part, we show that for general Banach spaces this condition does not give any information on the growth of the associated $C_0$-semigroup. For Hilbert spaces the situation is less dramatic. In particular, we show that the semigroup can grow at most like $t$. Furthermore, we show that for every $\gamma \in (0,1)$ there exists an infinitesimal generator satisfying the Kreiss resolvent condition, but whose semigroup grows at least like $t^\gamma$. As a consequence, we find that for ${\mathbb R}^N$ with the standard Euclidian norm the estimate $\|\exp (At)\| \leq M_1 \min (N,t)$ cannot be replaced by a lower power of $N$ or $t$.References
- Bernard Aupetit and Driss Drissi, Conformal transformations of dissipative operators, Math. Proc. R. Ir. Acad. 99A (1999), no. 2, 141–153. MR 1881805
- Nour-Eddine Benamara and Nikolai Nikolski, Resolvent tests for similarity to a normal operator, Proc. London Math. Soc. (3) 78 (1999), no. 3, 585–626. MR 1674839, DOI 10.1112/S0024611599001756
- N. Borovykh and M. N. Spijker, Bounding partial sums of Fourier series in weighted $L^2$-norms, with applications to matrix analysis, J. Comput. Appl. Math. 147 (2002), no. 2, 349–368. MR 1933601, DOI 10.1016/S0377-0427(02)00441-7
- Jan A. van Casteren, Operators similar to unitary or selfadjoint ones, Pacific J. Math. 104 (1983), no. 1, 241–255. MR 683741, DOI 10.2140/pjm.1983.104.241
- Ruth F. Curtain and Hans Zwart, An introduction to infinite-dimensional linear systems theory, Texts in Applied Mathematics, vol. 21, Springer-Verlag, New York, 1995. MR 1351248, DOI 10.1007/978-1-4612-4224-6
- J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker, Linear stability analysis in the numerical solution of initial value problems, Acta numerica, 1993, Acta Numer., Cambridge Univ. Press, Cambridge, 1993, pp. 199–237. MR 1224683, DOI 10.1017/S0962492900002361
- Tatjana Eisner, Polynomially bounded $C_0$-semigroups, Semigroup Forum 70 (2005), no. 1, 118–126. MR 2107198, DOI 10.1007/s00233-004-0151-z
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- J. F. B. M. Kraaijevanger, Two counterexamples related to the Kreiss matrix theorem, BIT 34 (1994), no. 1, 113–119. MR 1429692, DOI 10.1007/BF01935020
- Heinz-Otto Kreiss, Über Matrizen die beschränkte Halbgruppen erzeugen, Math. Scand. 7 (1959), 71–80 (German). MR 110952, DOI 10.7146/math.scand.a-10563
- Heinz-Otto Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, Nordisk Tidskr. Informationsbehandling (BIT) 2 (1962), 153–181 (German, with English summary). MR 165712, DOI 10.1007/bf01957330
- Randall J. LeVeque and Lloyd N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, BIT 24 (1984), no. 4, 584–591. MR 764830, DOI 10.1007/BF01934916
- Christian Lubich and Olavi Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), no. 2, 293–313. MR 1112225, DOI 10.1007/BF01931289
- C. A. McCarthy and J. Schwartz, On the norm of a finite Boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18 (1965), 191–201. MR 180867, DOI 10.1002/cpa.3160180118
- N. Kalton, S. Montgomery-Smith, The paper by Spijker, Tracogna and Welfert, 2004.
- Jan Prüss, On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc. 284 (1984), no. 2, 847–857. MR 743749, DOI 10.1090/S0002-9947-1984-0743749-9
- M. N. Spijker, S. Tracogna, and B. D. Welfert, About the sharpness of the stability estimates in the Kreiss matrix theorem, Math. Comp. 72 (2003), no. 242, 697–713. MR 1954963, DOI 10.1090/S0025-5718-02-01472-2
- John C. Strikwerda and Bruce A. Wade, A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, Linear operators (Warsaw, 1994) Banach Center Publ., vol. 38, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 339–360. MR 1457017
- H. Zwart, On the estimate $\|(sI-A)^{-1}\| \leq M/\mathrm {Re}(s)$, Ulmer Semenaire 2003, pp. 384–388, 2003.
Bibliographic Information
- Tatjana Eisner
- Affiliation: Arbeitsbereich Funktionalanalysis, Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
- Email: talo@fa.uni-tuebingen.de
- Hans Zwart
- Affiliation: Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Email: h.j.zwart@math.utwente.nl
- Received by editor(s): March 14, 2005
- Received by editor(s) in revised form: September 13, 2005
- Published electronically: July 10, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1971-1985
- MSC (2000): Primary 47D06, 15A60; Secondary 65J10, 34K20, 47N40
- DOI: https://doi.org/10.1090/S0025-5718-06-01862-X
- MathSciNet review: 2240644
Dedicated: Dedicated to M.N. Spijker on the occasion of his 65th birthday.