An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods
Authors:
Gabriel N. Gatica and Francisco-Javier Sayas
Journal:
Math. Comp. 75 (2006), 1675-1696
MSC (2000):
Primary 65N30, 65N38, 65N12, 65N15
DOI:
https://doi.org/10.1090/S0025-5718-06-01864-3
Published electronically:
July 3, 2006
MathSciNet review:
2240630
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we analyze the coupling of local discontinuous Galerkin (LDG) and boundary element methods as applied to linear exterior boundary value problems in the plane. As a model problem we consider a Poisson equation in an annular polygonal domain coupled with a Laplace equation in the surrounding unbounded exterior region. The technique resembles the usual coupling of finite elements and boundary elements, but the corresponding analysis becomes quite different. In particular, in order to deal with the weak continuity of the traces at the interface boundary, we need to define a mortar-type auxiliary unknown representing an interior approximation of the normal derivative. We prove the stability of the resulting discrete scheme with respect to a mesh-dependent norm and derive a Strang-type estimate for the associated error. Finally, we apply local and global approximation properties of the subspaces involved to obtain the a priori error estimate in the energy norm.
- 1. Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, https://doi.org/10.1137/0719052
- 2. Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, https://doi.org/10.1137/S0036142901384162
- 3. Roland Becker, Peter Hansbo, and Mats G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 5-6, 723–733. MR 1952357, https://doi.org/10.1016/S0045-7825(02)00593-5
- 4. Rommel Bustinza, Gabriel N. Gatica, and Bernardo Cockburn, An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems, J. Sci. Comput. 22/23 (2005), 147–185. MR 2142193, https://doi.org/10.1007/s10915-004-4137-5
- 5. Rommel Bustinza and Gabriel N. Gatica, A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions, SIAM J. Sci. Comput. 26 (2004), no. 1, 152–177. MR 2114338, https://doi.org/10.1137/S1064827502419415
- 6. Rommel Bustinza and Gabriel N. Gatica, A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics, J. Comput. Phys. 207 (2005), no. 2, 427–456. MR 2144625, https://doi.org/10.1016/j.jcp.2005.01.017
- 7. Carsten Carstensen and Ernst P. Stephan, Adaptive coupling of boundary elements and finite elements, RAIRO Modél. Math. Anal. Numér. 29 (1995), no. 7, 779–817 (English, with English and French summaries). MR 1364401, https://doi.org/10.1051/m2an/1995290707791
- 8. Paul Castillo, Bernardo Cockburn, Ilaria Perugia, and Dominik Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676–1706. MR 1813251, https://doi.org/10.1137/S0036142900371003
- 9. Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
- 10. Bernardo Cockburn and Clint Dawson, Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, The mathematics of finite elements and applications, X, MAFELAP 1999 (Uxbridge), Elsevier, Oxford, 2000, pp. 225–238. MR 1801979, https://doi.org/10.1016/B978-008043568-8/50014-6
- 11. Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, https://doi.org/10.1137/S0036142997316712
- 12. Bernardo Cockburn and Clint Dawson, Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems, Comput. Geosci. 6 (2002), no. 3-4, 505–522. Locally conservative numerical methods for flow in porous media. MR 1956028, https://doi.org/10.1023/A:1021203618109
- 13. Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, https://doi.org/10.1137/0519043
- 14. Clint Dawson and Jennifer Proft, Coupling of continuous and discontinuous Galerkin methods for transport problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 29-30, 3213–3231. MR 1908108, https://doi.org/10.1016/S0045-7825(02)00257-8
- 15. Clint Dawson and Jennifer Proft, Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 41-42, 4721–4746. MR 1929628, https://doi.org/10.1016/S0045-7825(02)00402-4
- 16. Clint Dawson and Jennifer Proft, Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 3-5, 289–318. MR 2031230, https://doi.org/10.1016/j.cma.2003.09.011
- 17. Giovanni P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994. Linearized steady problems. MR 1284205
- 18. Gabriel N. Gatica and Norbert Heuer, A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity, SIAM J. Numer. Anal. 38 (2000), no. 2, 380–400. MR 1770054, https://doi.org/10.1137/S0036142999363486
- 19. Gabriel N. Gatica and George C. Hsiao, Boundary-field equation methods for a class of nonlinear problems, Pitman Research Notes in Mathematics Series, vol. 331, Longman, Harlow, 1995. MR 1379331
- 20. G.N. GATICA AND F.J. SAYAS: A note on the local approximation properties of piecewise polynomials with applications to LDG methods. Complex Variables and Elliptic Equations, vol. 51, 2, pp. 109-117 (2006).
- 21. R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering, SIAM J. Numer. Anal. 41 (2003), no. 3, 919–944. MR 2005188, https://doi.org/10.1137/S0036142901397757
- 22. Paul Houston, Janice Robson, and Endre Süli, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I. The scalar case, IMA J. Numer. Anal. 25 (2005), no. 4, 726–749. MR 2170521, https://doi.org/10.1093/imanum/dri014
- 23. A. Márquez, S. Meddahi, and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems, J. Comput. Phys. 199 (2004), no. 1, 205–220. MR 2081003, https://doi.org/10.1016/j.jcp.2004.02.005
- 24. Salim Meddahi and Francisco-Javier Sayas, A fully discrete BEM-FEM for the exterior Stokes problem in the plane, SIAM J. Numer. Anal. 37 (2000), no. 6, 2082–2102. MR 1766860, https://doi.org/10.1137/S0036142998341027
- 25. Salim Meddahi and Virginia Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem, M2AN Math. Model. Numer. Anal. 37 (2003), no. 2, 291–318. MR 1991202, https://doi.org/10.1051/m2an:2003027
- 26. Salim Meddahi, Javier Valdés, Omar Menéndez, and Pablo Pérez, On the coupling of boundary integral and mixed finite element methods, J. Comput. Appl. Math. 69 (1996), no. 1, 113–124. MR 1391614, https://doi.org/10.1016/0377-0427(95)00023-2
- 27. Ilaria Perugia and Dominik Schötzau, On the coupling of local discontinuous Galerkin and conforming finite element methods, J. Sci. Comput. 16 (2001), no. 4, 411–433 (2002). MR 1881853, https://doi.org/10.1023/A:1013294207868
- 28. Ilaria Perugia and Dominik Schötzau, An ℎ𝑝-analysis of the local discontinuous Galerkin method for diffusion problems, Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), 2002, pp. 561–571. MR 1910752, https://doi.org/10.1023/A:1015118613130
- 29. B. RIVIERE AND M.F. WHEELER: A posteriori error estimates and mesh adaptation strategy for discontinuous Galerkin methods applied to diffusion problems. Preprint 00-10, TICAM, University of Texas at Austin, USA (2000).
- 30. Francisco-Javier Sayas, A nodal coupling of finite and boundary elements, Numer. Methods Partial Differential Equations 19 (2003), no. 5, 555–570. MR 1996220, https://doi.org/10.1002/num.10057
- 31. Shuyu Sun, Béatrice Rivière, and Mary F. Wheeler, A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media, Recent progress in computational and applied PDEs (Zhangjiajie, 2001) Kluwer/Plenum, New York, 2002, pp. 323–351. MR 2039576
Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N38, 65N12, 65N15
Retrieve articles in all journals with MSC (2000): 65N30, 65N38, 65N12, 65N15
Additional Information
Gabriel N. Gatica
Affiliation:
Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Email:
ggatica@ing-mat.udec.cl
Francisco-Javier Sayas
Affiliation:
Departamento de Matemática Aplicada, Universidad de Zaragoza, Centro Politécnico Superior, María de Luna, 3 - 50018 Zaragoza, Spain
Email:
jsayas@unizar.es
DOI:
https://doi.org/10.1090/S0025-5718-06-01864-3
Keywords:
Boundary elements,
local discontinuous Galerkin,
coupling,
error estimates
Received by editor(s):
January 3, 2005
Received by editor(s) in revised form:
August 31, 2005
Published electronically:
July 3, 2006
Additional Notes:
This research was partially supported by CONICYT-Chile through the FONDAP Program in Applied Mathematics, by the Dirección de Investigación of the Universidad de Concepción through the Advanced Research Groups Program, by Spanish FEDER/MCYT Project MTM2004-019051, and by a grant of Programa Europa XXI (Gobierno Aragón + CAI)
Article copyright:
© Copyright 2006
American Mathematical Society