Energy norm a posteriori error estimates for mixed finite element methods
Authors:
Carlo Lovadina and Rolf Stenberg
Journal:
Math. Comp. 75 (2006), 1659-1674
MSC (2000):
Primary 65N30
DOI:
https://doi.org/10.1090/S0025-5718-06-01872-2
Published electronically:
June 26, 2006
MathSciNet review:
2240629
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper deals with the a posteriori error analysis of mixed finite element methods for second order elliptic equations. It is shown that a reliable and efficient error estimator can be constructed using a postprocessed solution of the method. The analysis is performed in two different ways: under a saturation assumption and using a Helmholtz decomposition for vector fields.
- 1. A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385–395. MR 1414415, https://doi.org/10.1007/s002110050222
- 2. D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7–32 (English, with French summary). MR 813687, https://doi.org/10.1051/m2an/1985190100071
- 3. I. Babuška, J. Osborn, and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), no. 152, 1039–1062. MR 583486, https://doi.org/10.1090/S0025-5718-1980-0583486-7
- 4. Dietrich Braess, Finite elements, 2nd ed., Cambridge University Press, Cambridge, 2001. Theory, fast solvers, and applications in solid mechanics; Translated from the 1992 German edition by Larry L. Schumaker. MR 1827293
- 5. D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431–2444. MR 1427472, https://doi.org/10.1137/S0036142994264079
- 6. James H. Bramble and Jinchao Xu, A local post-processing technique for improving the accuracy in mixed finite-element approximations, SIAM J. Numer. Anal. 26 (1989), no. 6, 1267–1275. MR 1025087, https://doi.org/10.1137/0726073
- 7. Franco Brezzi, Jim Douglas Jr., Ricardo Durán, and Michel Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), no. 2, 237–250. MR 890035, https://doi.org/10.1007/BF01396752
- 8. Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205
- 9. Franco Brezzi, Jim Douglas Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217–235. MR 799685, https://doi.org/10.1007/BF01389710
- 10. Carsten Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465–476. MR 1408371, https://doi.org/10.1090/S0025-5718-97-00837-5
- 11. E. Dari, R. Duran, C. Padra, and V. Vampa, A posteriori error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 4, 385–400 (English, with English and French summaries). MR 1399496, https://doi.org/10.1051/m2an/1996300403851
- 12. Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383
- 13. Carlo Lovadina and Rolf Stenberg, A posteriori error analysis of the linked interpolation technique for plate bending problems, SIAM J. Numer. Anal. 43 (2005), no. 5, 2227–2249. MR 2192338, https://doi.org/10.1137/040614645
- 14. J.-C. Nédélec, A new family of mixed finite elements in 𝑅³, Numer. Math. 50 (1986), no. 1, 57–81. MR 864305, https://doi.org/10.1007/BF01389668
- 15. P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292–315. Lecture Notes in Math., Vol. 606. MR 0483555
- 16. Rolf Stenberg, Some new families of finite elements for the Stokes equations, Numer. Math. 56 (1990), no. 8, 827–838. MR 1035181, https://doi.org/10.1007/BF01405291
- 17. Rolf Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 1, 151–167 (English, with French summary). MR 1086845, https://doi.org/10.1051/m2an/1991250101511
Retrieve articles in Mathematics of Computation with MSC (2000): 65N30
Retrieve articles in all journals with MSC (2000): 65N30
Additional Information
Carlo Lovadina
Affiliation:
Dipartimento di Matematica, Università di Pavia and IMATI-CNR, VIa Ferrata 1, Pavia 27100, Italy
Email:
carlo.lovadina@unipv.it
Rolf Stenberg
Affiliation:
Institute of Mathematics, Helsinki University of Technology, P.O. Box 1100, 02015 TKK, Finland
Email:
rolf.stenberg@tkk.fi
DOI:
https://doi.org/10.1090/S0025-5718-06-01872-2
Keywords:
Mixed finite element methods,
a posteriori error estimates,
postprocessing.
Received by editor(s):
October 20, 2004
Received by editor(s) in revised form:
June 7, 2005
Published electronically:
June 26, 2006
Additional Notes:
This work has been supported by the European Project HPRN-CT-2002-00284 “New Materials, Adaptive Systems and their Nonlinearities. Modelling, Control and Numerical Simulation”.
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.