Regularization of some linear ill-posed problems with discretized random noisy data
HTML articles powered by AMS MathViewer
- by Peter Mathé and Sergei V. Pereverzev;
- Math. Comp. 75 (2006), 1913-1929
- DOI: https://doi.org/10.1090/S0025-5718-06-01873-4
- Published electronically: June 28, 2006
- PDF | Request permission
Abstract:
For linear statistical ill-posed problems in Hilbert spaces we introduce an adaptive procedure to recover the unknown solution from indirect discrete and noisy data. This procedure is shown to be order optimal for a large class of problems. Smoothness of the solution is measured in terms of general source conditions. The concept of operator monotone functions turns out to be an important tool for the analysis.References
- Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662, DOI 10.1007/978-1-4612-0653-8
- Alexander Goldenshluger and Sergei V. Pereverzev, Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations, Probab. Theory Related Fields 118 (2000), no. 2, 169–186. MR 1790080, DOI 10.1007/s440-000-8013-3
- Markus Hegland, Variable Hilbert scales and their interpolation inequalities with applications to Tikhonov regularization, Appl. Anal. 59 (1995), no. 1-4, 207–223. MR 1378036, DOI 10.1080/00036819508840400
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- O. V. Lepskiĭ, A problem of adaptive estimation in Gaussian white noise, Teor. Veroyatnost. i Primenen. 35 (1990), no. 3, 459–470 (Russian); English transl., Theory Probab. Appl. 35 (1990), no. 3, 454–466 (1991). MR 1091202, DOI 10.1137/1135065
- Bernard A. Mair and Frits H. Ruymgaart, Statistical inverse estimation in Hilbert scales, SIAM J. Appl. Math. 56 (1996), no. 5, 1424–1444. MR 1409127, DOI 10.1137/S0036139994264476
- Peter Mathé and Sergei V. Pereverzev, Optimal discretization of inverse problems in Hilbert scales. Regularization and self-regularization of projection methods, SIAM J. Numer. Anal. 38 (2001), no. 6, 1999–2021. MR 1856240, DOI 10.1137/S003614299936175X
- Peter Mathé and Sergei V. Pereverzev, Moduli of continuity for operator valued functions, Numer. Funct. Anal. Optim. 23 (2002), no. 5-6, 623–631. MR 1923828, DOI 10.1081/NFA-120014755
- Peter Mathé and Sergei V. Pereverzev, Discretization strategy for linear ill-posed problems in variable Hilbert scales, Inverse Problems 19 (2003), no. 6, 1263–1277. MR 2036530, DOI 10.1088/0266-5611/19/6/003
- Peter Mathé and Sergei V. Pereverzev, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems 19 (2003), no. 3, 789–803. MR 1984890, DOI 10.1088/0266-5611/19/3/319
- M. T. Nair, E. Schock, and U. Tautenhahn, Morozov’s discrepancy principle under general source conditions, Z. Anal. Anwendungen 22 (2003), no. 1, 199–214. MR 1962084, DOI 10.4171/ZAA/1140
- A. Pietsch, Eigenvalues and $s$-numbers, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], vol. 43, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987. MR 917067
- M. S. Pinsker, Optimal filtration of square-integrable signals in Gaussian noise, Problemy Peredachi Informatsii 16 (1980), no. 2, 52–68 (Russian); English transl., Problems Inform. Transmission 16 (1980), no. 2, 120–133. MR 624591
- Ulrich Tautenhahn, Error estimates for regularization methods in Hilbert scales, SIAM J. Numer. Anal. 33 (1996), no. 6, 2120–2130. MR 1427456, DOI 10.1137/S0036142994269411
- Alexandre Tsybakov, On the best rate of adaptive estimation in some inverse problems, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 9, 835–840 (English, with English and French summaries). MR 1769957, DOI 10.1016/S0764-4442(00)00278-0
- N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions on Banach spaces, Mathematics and its Applications (Soviet Series), vol. 14, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian and with a preface by Wojbor A. Woyczynski. MR 1435288, DOI 10.1007/978-94-009-3873-1
- Curtis R. Vogel, Computational methods for inverse problems, Frontiers in Applied Mathematics, vol. 23, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. With a foreword by H. T. Banks. MR 1928831, DOI 10.1137/1.9780898717570
Bibliographic Information
- Peter Mathé
- Affiliation: Weierstraß Institute for Applied Analysis and Stochastics, Mohrenstraße 39, D–10117 Berlin, Germany
- Email: mathe@wias-berlin.de
- Sergei V. Pereverzev
- Affiliation: Johann-Radon-Institute (RICAM), Altenberger Strasse 69, A-4040 Linz, Austria
- Email: sergei.pereverzyev@oeaw.ac.at
- Received by editor(s): February 2, 2005
- Received by editor(s) in revised form: August 26, 2005
- Published electronically: June 28, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1913-1929
- MSC (2000): Primary 62G05; Secondary 62G20, 65J20
- DOI: https://doi.org/10.1090/S0025-5718-06-01873-4
- MathSciNet review: 2240642