On the minimal polynomial of Gauss periods for prime powers
HTML articles powered by AMS MathViewer
- by S. Gurak;
- Math. Comp. 75 (2006), 2021-2035
- DOI: https://doi.org/10.1090/S0025-5718-06-01885-0
- Published electronically: July 11, 2006
- PDF | Request permission
Abstract:
For a positive integer $m$, set $\zeta _{m}=\exp (2\pi i/m)$ and let $\textbf {Z}_{m}^{*}$ denote the group of reduced residues modulo $m$. Fix a congruence group $H$ of conductor $m$ and of order $f$. Choose integers $t_{1},\dots ,t_{e}$ to represent the $e=\phi (m)/f$ cosets of $H$ in $\textbf {Z}_{m}^{*}$. The Gauss periods \[ \displaylines { \theta _{j} =\sum _{x \in H} \zeta _{m}^{t_{j}x} \;\;\; (1 \leq j \leq e) }\] corresponding to $H$ are conjugate and distinct over $\textbf {Q}$ with minimal polynomial \[ \displaylines { g(x) = x^{e} + c_{1}x^{e-1} + \cdots + c_{e-1} x + c_{e}. }\] To determine the coefficients of the period polynomial $g(x)$ (or equivalently, its reciprocal polynomial $G(X)=X^{e}g(X^{-1}))$ is a classical problem dating back to Gauss. Previous work of the author, and Gupta and Zagier, primarily treated the case $m=p$, an odd prime, with $f >1$ fixed. In this setting, it is known for certain integral power series $A(X)$ and $B(X)$, that for any positive integer $N$ \[ \displaylines { G(X) \equiv A(X)\cdot B(X)^{\frac {p-1}{f}} \;\;\;(\textrm {mod}\;X^{N}) }\] holds in $\textbf {Z}[X]$ for all primes $p \equiv 1(\textrm {mod}\; f)$ except those in an effectively determinable finite set. Here we describe an analogous result for the case $m=p^{\alpha }$, a prime power ($\alpha > 1$). The methods extend for odd prime powers $p^{\alpha }$ to give a similar result for certain twisted Gauss periods of the form \[ \displaylines { \psi _{j} = i^{*} \sqrt {p} \sum _{x \in H} (\frac {t_{j}x}{p}) \zeta _{p^{\alpha }}^{t_{j}x} \;\;(1 \leq j \leq e),} \] where $(\frac { }{p})$ denotes the usual Legendre symbol and $i^{*}= i^{\frac {(p-1)^{2}}{4}}$.References
- Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1625181
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 195803
- Richard P. Brent, On computing factors of cyclotomic polynomials, Math. Comp. 61 (1993), no. 203, 131–149. MR 1205459, DOI 10.1090/S0025-5718-1993-1205459-2
- L.E. Dickson, Elementary Theory of Equations, Wiley, New York.
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Yale University Press, New Haven, Conn.-London, 1966. Translated into English by Arthur A. Clarke, S. J. MR 197380
- S. Gupta and D. Zagier, On the coefficients of the minimal polynomials of Gaussian periods, Math. Comp. 60 (1993), no. 201, 385–398. MR 1155574, DOI 10.1090/S0025-5718-1993-1155574-7
- S. Gurak, Minimal polynomials for Gauss circulants and cyclotomic units, Pacific J. Math. 102 (1982), no. 2, 347–353. MR 686555, DOI 10.2140/pjm.1982.102.347
- S. Gurak, Minimal polynomials for circular numbers, Pacific J. Math. 112 (1984), no. 2, 313–331. MR 743988, DOI 10.2140/pjm.1984.112.313
- S. Gurak, "Minimal polynomials for Gauss periods with f=2," Acta Arith. 121 (2006), 233–257.
- S. Gurak, "Explicit evaluation of multi-dimensional Kloosterman sums for prime powers" (to appear).
- Helmut Hasse, Vorlesungen über Zahlentheorie, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksightigung der Anwendungsgebiete, Band LIX, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950 (German). MR 51844, DOI 10.1007/978-3-642-52795-1
- Jürgen Neukirch, Class field theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986. MR 819231, DOI 10.1007/978-3-642-82465-4
- Hans Salié, Über die Kloostermanschen Summen $S(u,v;q)$, Math. Z. 34 (1932), no. 1, 91–109 (German). MR 1545243, DOI 10.1007/BF01180579
Bibliographic Information
- S. Gurak
- Affiliation: Department of Mathematics, University of San Diego, San Diego, California 92110
- Email: gurak@sandiego.edu
- Received by editor(s): June 2, 2005
- Published electronically: July 11, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 2021-2035
- MSC (2000): Primary 11L05, 11T22, 11T23
- DOI: https://doi.org/10.1090/S0025-5718-06-01885-0
- MathSciNet review: 2240647