On the minimal polynomial of Gauss periods for prime powers
Author:
S. Gurak
Journal:
Math. Comp. 75 (2006), 2021-2035
MSC (2000):
Primary 11L05, 11T22, 11T23
DOI:
https://doi.org/10.1090/S0025-5718-06-01885-0
Published electronically:
July 11, 2006
MathSciNet review:
2240647
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For a positive integer , set
and let
denote the group of reduced residues modulo
. Fix a congruence group
of conductor
and of order
. Choose integers
to represent the
cosets of
in
. The Gauss periods












![$ {\bf Z}[X]$](/mcom/2006-75-256/S0025-5718-06-01885-0/gif-abstract0/img24.gif)







- 1. Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1625181
- 2. A. I. Borevich and I. R. Shafarevich, Number theory, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR 0195803
- 3. Richard P. Brent, On computing factors of cyclotomic polynomials, Math. Comp. 61 (1993), no. 203, 131–149. MR 1205459, https://doi.org/10.1090/S0025-5718-1993-1205459-2
- 4. L.E. Dickson, Elementary Theory of Equations, Wiley, New York.
- 5. Carl Friedrich Gauss, Disquisitiones arithmeticae, Translated into English by Arthur A. Clarke, S. J, Yale University Press, New Haven, Conn.-London, 1966. MR 0197380
- 6. S. Gupta and D. Zagier, On the coefficients of the minimal polynomials of Gaussian periods, Math. Comp. 60 (1993), no. 201, 385–398. MR 1155574, https://doi.org/10.1090/S0025-5718-1993-1155574-7
- 7. S. Gurak, Minimal polynomials for Gauss circulants and cyclotomic units, Pacific J. Math. 102 (1982), no. 2, 347–353. MR 686555
- 8. S. Gurak, Minimal polynomials for circular numbers, Pacific J. Math. 112 (1984), no. 2, 313–331. MR 743988
- 9. S. Gurak, "Minimal polynomials for Gauss periods with f=2," Acta Arith. 121 (2006), 233-257.
- 10. S. Gurak, "Explicit evaluation of multi-dimensional Kloosterman sums for prime powers" (to appear).
- 11. Helmut Hasse, Vorlesungen über Zahlentheorie, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksightigung der Anwendungsgebiete. Band LIX, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950 (German). MR 0051844
- 12. Jürgen Neukirch, Class field theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986. MR 819231
- 13. Hans Salié, Über die Kloostermanschen Summen 𝑆(𝑢,𝑣;𝑞), Math. Z. 34 (1932), no. 1, 91–109 (German). MR 1545243, https://doi.org/10.1007/BF01180579
Retrieve articles in Mathematics of Computation with MSC (2000): 11L05, 11T22, 11T23
Retrieve articles in all journals with MSC (2000): 11L05, 11T22, 11T23
Additional Information
S. Gurak
Affiliation:
Department of Mathematics, University of San Diego, San Diego, California 92110
Email:
gurak@sandiego.edu
DOI:
https://doi.org/10.1090/S0025-5718-06-01885-0
Received by editor(s):
June 2, 2005
Published electronically:
July 11, 2006
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.