Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems
HTML articles powered by AMS MathViewer
- by Alan Demlow;
- Math. Comp. 76 (2007), 19-42
- DOI: https://doi.org/10.1090/S0025-5718-06-01879-5
- Published electronically: October 4, 2006
- PDF | Request permission
Abstract:
We prove local a posteriori error estimates for pointwise gradient errors in finite element methods for a second-order linear elliptic model problem. First we split the local gradient error into a computable local residual term and a weaker global norm of the finite element error (the “pollution term”). Using a mesh-dependent weight, the residual term is bounded in a sharply localized fashion. In specific situations the pollution term may also be bounded by computable residual estimators. On nonconvex polygonal and polyhedral domains in two and three space dimensions, we may choose estimators for the pollution term which do not employ specific knowledge of corner singularities and which are valid on domains with cracks. The finite element mesh is only required to be simplicial and shape-regular, so that highly graded and unstructured meshes are allowed.References
- I. Babuška and A. Miller, A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg. 61 (1987), no. 1, 1–40. MR 880421, DOI 10.1016/0045-7825(87)90114-9
- E. Dari, R. G. Durán, and C. Padra, Maximum norm error estimators for three-dimensional elliptic problems, SIAM J. Numer. Anal. 37 (2000), no. 2, 683–700. MR 1740762, DOI 10.1137/S0036142998340253
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682
- Monique Dauge, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory 15 (1992), no. 2, 227–261. MR 1147281, DOI 10.1007/BF01204238
- A. Demlow, Localized pointwise a posteriori estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems, SIAM J. Numer. Anal. (to appear).
- G. Dolzmann and S. Müller, Estimates for Green’s matrices of elliptic systems by $L^p$ theory, Manuscripta Math. 88 (1995), no. 2, 261–273. MR 1354111, DOI 10.1007/BF02567822
- W. Dörfler and M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation, Math. Comp. 67 (1998), no. 224, 1361–1382. MR 1489969, DOI 10.1090/S0025-5718-98-00993-4
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Michael Grüter and Kjell-Ove Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), no. 3, 303–342. MR 657523, DOI 10.1007/BF01166225
- W. Hoffmann, A. H. Schatz, L. B. Wahlbin, and G. Wittum, Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. I. A smooth problem and globally quasi-uniform meshes, Math. Comp. 70 (2001), no. 235, 897–909. MR 1826572, DOI 10.1090/S0025-5718-01-01286-8
- Ju. P. Krasovskiĭ, Properties of Green’s functions, and generalized solutions of elliptic boundary value problems, Dokl. Akad. Nauk SSSR 184 (1969), 270–273 (Russian). MR 237956
- Xiaohai Liao and Ricardo H. Nochetto, Local a posteriori error estimates and adaptive control of pollution effects, Numer. Methods Partial Differential Equations 19 (2003), no. 4, 421–442. MR 1980188, DOI 10.1002/num.10053
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- Ricardo H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp. 64 (1995), no. 209, 1–22. MR 1270622, DOI 10.1090/S0025-5718-1995-1270622-3
- R. H. Nochetto, A. Schmidt, K. G. Siebert, and A. Veeser, Pointwise a posteriori error estimates for monotone semilinear problems, preprint.
- Ricardo H. Nochetto, Kunibert G. Siebert, and Andreas Veeser, Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math. 95 (2003), no. 1, 163–195. MR 1993943, DOI 10.1007/s00211-002-0411-3
- Alfred H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. II. Interior estimates, SIAM J. Numer. Anal. 38 (2000), no. 4, 1269–1293. MR 1786140, DOI 10.1137/S0036142997324800
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73–109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for finite element methods. II, Math. Comp. 64 (1995), no. 211, 907–928. MR 1297478, DOI 10.1090/S0025-5718-1995-1297478-7
- A. Schmidt and K. G. Siebert, ALBERT—software for scientific computations and applications, Acta Math. Univ. Comenian. (N.S.) 70 (2000), no. 1, 105–122. MR 1865363
- Alfred Schmidt and Kunibert G. Siebert, Design of adaptive finite element software, Lecture Notes in Computational Science and Engineering, vol. 42, Springer-Verlag, Berlin, 2005. The finite element toolbox ALBERTA; With 1 CD-ROM (Unix/Linux). MR 2127659
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 67–83. MR 1284252, DOI 10.1016/0377-0427(94)90290-9
Bibliographic Information
- Alan Demlow
- Affiliation: Abteilung für Angewandte Mathematik, Hermann-Herder-Str. 10, 79104 Freiburg, Germany
- MR Author ID: 693541
- Email: demlow@mathematik.uni-freiburg.de
- Received by editor(s): December 10, 2004
- Received by editor(s) in revised form: September 16, 2005
- Published electronically: October 4, 2006
- Additional Notes: This material is based upon work partially supported under a National Science Foundation postdoctoral research fellowship.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 19-42
- MSC (2000): Primary 65N30, 65N15
- DOI: https://doi.org/10.1090/S0025-5718-06-01879-5
- MathSciNet review: 2261010