A second-order Magnus-type integrator for quasi-linear parabolic problems
HTML articles powered by AMS MathViewer
- by C. González and M. Thalhammer;
- Math. Comp. 76 (2007), 205-231
- DOI: https://doi.org/10.1090/S0025-5718-06-01883-7
- Published electronically: August 15, 2006
- PDF | Request permission
Abstract:
In this paper, we consider an explicit exponential method of classical order two for the time discretisation of quasi-linear parabolic problems. The numerical scheme is based on a Magnus integrator and requires the evaluation of two exponentials per step. Our convergence analysis includes parabolic partial differential equations under a Dirichlet boundary condition and provides error estimates in Sobolev spaces. In an abstract formulation the initial boundary value problem is written as an initial value problem on a Banach space $X$ \begin{equation*} u’(t) = A\big (u(t)\big ) u(t), \quad 0 < t \leq T, \qquad u(0) \text { given}, \end{equation*} involving the sectorial operator $A(v):D \to X$ with domain $D \subset X$ independent of $v \in V \subset X$. Under reasonable regularity requirements on the problem, we prove the stability of the numerical method and derive error estimates in the norm of certain intermediate spaces between $X$ and $D$. Various applications and a numerical experiment illustrate the theoretical results.References
- Herbert Amann, Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc. 293 (1986), no. 1, 191–227. MR 814920, DOI 10.1090/S0002-9947-1986-0814920-4
- Herbert Amann, Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal. 12 (1988), no. 9, 895–919. MR 960634, DOI 10.1016/0362-546X(88)90073-9
- Herbert Amann, Highly degenerate quasilinear parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), no. 1, 135–166. MR 1118224
- Herbert Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory. MR 1345385, DOI 10.1007/978-3-0348-9221-6
- Nairo D. Aparicio, Simon J. A. Malham, and Marcel Oliver, Numerical evaluation of the Evans function by Magnus integration, BIT 45 (2005), no. 2, 219–258. MR 2176193, DOI 10.1007/s10543-005-0001-8
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 482275
- S. Blanes, F. Casas, and J. Ros, Improved high order integrators based on the Magnus expansion, BIT 40 (2000), no. 3, 434–450. MR 1780401, DOI 10.1023/A:1022311628317
- H. Brunner and P. J. van der Houwen, The numerical solution of Volterra equations, CWI Monographs, vol. 3, North-Holland Publishing Co., Amsterdam, 1986. MR 871871
- Ph. Clément, C. J. van Duijn, and Shuanhu Li, On a nonlinear elliptic-parabolic partial differential equation system in a two-dimensional groundwater flow problem, SIAM J. Math. Anal. 23 (1992), no. 4, 836–851. MR 1166560, DOI 10.1137/0523044
- J. Van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix exponential (2004). To appear in SIAM J. Sci. Comp.
- C. González, A. Ostermann, and M. Thalhammer, A second-order Magnus integrator for non-autonomous parabolic problems (2004). J. Comp. Appl. Math. (in press).
- C. González and C. Palencia, Stability of Runge-Kutta methods for abstract time-dependent parabolic problems: the Hölder case, Math. Comp. 68 (1999), no. 225, 73–89. MR 1609666, DOI 10.1090/S0025-5718-99-01018-2
- C. González and C. Palencia, Stability of Runge-Kutta methods for quasilinear parabolic problems, Math. Comp. 69 (2000), no. 230, 609–628. MR 1659851, DOI 10.1090/S0025-5718-99-01156-4
- P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rational Mech. Anal. 25 (1967), 40–63 (French). MR 213864, DOI 10.1007/BF00281421
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Marlis Hochbruck and Christian Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34 (1997), no. 5, 1911–1925. MR 1472203, DOI 10.1137/S0036142995280572
- Marlis Hochbruck and Christian Lubich, On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 41 (2003), no. 3, 945–963. MR 2005189, DOI 10.1137/S0036142902403875
- A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999), no. 1754, 983–1019. MR 1694700, DOI 10.1098/rsta.1999.0362
- Ch. Lubich, Integrators for Quantum Dynamics: A Numerical Analyst’s Brief Review. In: Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes, J. Grotendorst, D. Mary, A. Muramatsu (Eds.), John von Neumann Institute for Computing, Jülich, NIC Series 10 (2002) 459-466.
- Alessandra Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995. MR 1329547, DOI 10.1007/978-3-0348-9234-6
- Wilhelm Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math. 7 (1954), 649–673. MR 67873, DOI 10.1002/cpa.3160070404
- Cleve Moler and Charles Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (2003), no. 1, 3–49. MR 1981253, DOI 10.1137/S00361445024180
- Hans Munthe-Kaas and Brynjulf Owren, Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999), no. 1754, 957–981. MR 1694699, DOI 10.1098/rsta.1999.0361
- Alexander Ostermann and Mechthild Thalhammer, Non-smooth data error estimates for linearly implicit Runge-Kutta methods, IMA J. Numer. Anal. 20 (2000), no. 2, 167–184. MR 1752261, DOI 10.1093/imanum/20.2.167
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- M. Thalhammer, A second-order Magnus type integrator for non-autonomous semilinear parabolic problems (2004). Submitted to IMA J. Numer. Anal.
- M. Thalhammer, A fourth-order commutator-free exponential integrator for non-autonomous differential equations (2005). Submitted to SIAM J. Numer. Anal.
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
- J. Wensch, M. Däne, W. Hergert, and A. Ernst, The solution of stationary ODE problems in quantum mechanics by Magnus methods with stepsize control. Comp. Phys. Comm. 160 (2004) 129-139.
Bibliographic Information
- C. González
- Affiliation: Departamento de Matemática Aplicada y Computación, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
- Email: cesareo@mac.cie.uva.es
- M. Thalhammer
- Affiliation: Institut für Mathematik, Fakultät für Mathematik, Informatik und Physik, Universität Innsbruck, Technikerstrasse 25/7, A-6020 Innsbruck, Austria
- MR Author ID: 661917
- Email: Mechthild.Thalhammer@uibk.ac.at
- Received by editor(s): December 20, 2004
- Received by editor(s) in revised form: September 30, 2005
- Published electronically: August 15, 2006
- © Copyright 2006 American Mathematical Society
- Journal: Math. Comp. 76 (2007), 205-231
- MSC (2000): Primary 35K55, 35K90, 65L20, 65M12
- DOI: https://doi.org/10.1090/S0025-5718-06-01883-7
- MathSciNet review: 2261018