Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations
HTML articles powered by AMS MathViewer
- by Yinnian He and Weiwei Sun;
- Math. Comp. 76 (2007), 115-136
- DOI: https://doi.org/10.1090/S0025-5718-06-01886-2
- Published electronically: September 15, 2006
- PDF | Request permission
Abstract:
This paper provides an error analysis for the Crank–Nicolson extrapolation scheme of time discretization applied to the spatially discrete stabilized finite element approximation of the two-dimensional time-dependent Navier–Stokes problem, where the finite element space pair $(X_h,M_h)$ for the approximation $(u_h^n,p_h^n)$ of the velocity $u$ and the pressure $p$ is constructed by the low-order finite element: the $Q_1-P_0$ quadrilateral element or the $P_1-P_0$ triangle element with mesh size $h$. Error estimates of the numerical solution $(u_h^n,p_h^n)$ to the exact solution $(u(t_n),p(t_n))$ with $t_n\in (0,T]$ are derived.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 450957
- Abdellatif Agouzal, A posteriori error estimator for finite element discretizations of quasi-Newtonian Stokes flows, Int. J. Numer. Anal. Model. 2 (2005), no. 2, 221–239. MR 2111749
- Ali Ait Ou Ammi and Martine Marion, Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations, Numer. Math. 68 (1994), no. 2, 189–213. MR 1283337, DOI 10.1007/s002110050056
- I. Babuška, J. Osborn, and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), no. 152, 1039–1062. MR 583486, DOI 10.1090/S0025-5718-1980-0583486-7
- Garth A. Baker, Vassilios A. Dougalis, and Ohannes A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comp. 39 (1982), no. 160, 339–375. MR 669634, DOI 10.1090/S0025-5718-1982-0669634-0
- M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33 (1979), no. 2, 211–224. MR 549450, DOI 10.1007/BF01399555
- Christine Bernardi and Geneviève Raugel, A conforming finite element method for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal. 22 (1985), no. 3, 455–473. MR 787570, DOI 10.1137/0722027
- J. M. Boland and R. A. Nicolaides, Stability of finite elements under divergence constraints, SIAM J. Numer. Anal. 20 (1983), no. 4, 722–731. MR 708453, DOI 10.1137/0720048
- K. Boukir, Y. Maday, B. Métivet, and E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids 25 (1997), no. 12, 1421–1454. MR 1601529, DOI 10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.3.CO;2-1
- James H. Bramble and Joseph E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp. 50 (1988), no. 181, 1–17. MR 917816, DOI 10.1090/S0025-5718-1988-0917816-8
- James H. Bramble and Jinchao Xu, Some estimates for a weighted $L^2$ projection, Math. Comp. 56 (1991), no. 194, 463–476. MR 1066830, DOI 10.1090/S0025-5718-1991-1066830-3
- F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, Efficient solutions of elliptic systems (Kiel, 1984) Notes Numer. Fluid Mech., vol. 10, Friedr. Vieweg, Braunschweig, 1984, pp. 11–19. MR 804083
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575–626. MR 277126, DOI 10.1137/0707048
- Jim Douglas Jr. and Jun Ping Wang, An absolutely stabilized finite element method for the Stokes problem, Math. Comp. 52 (1989), no. 186, 495–508. MR 958871, DOI 10.1090/S0025-5718-1989-0958871-X
- Todd Dupont, Graeme Fairweather, and J. Peter Johnson, Three-level Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 11 (1974), 392–410. MR 403259, DOI 10.1137/0711034
- Howard Elman and David Silvester, Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput. 17 (1996), no. 1, 33–46. Special issue on iterative methods in numerical linear algebra (Breckenridge, CO, 1994). MR 1375264, DOI 10.1137/0917004
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- J. L. Guermond and Jie Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal. 41 (2003), no. 1, 112–134. MR 1974494, DOI 10.1137/S0036142901395400
- Yinnian He, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with $H^2$ or $H^1$ initial data, Numer. Methods Partial Differential Equations 21 (2005), no. 5, 875–904. MR 2154224, DOI 10.1002/num.20065
- Yinnian He, A fully discrete stabilized finite-element method for the time-dependent Navier-Stokes problem, IMA J. Numer. Anal. 23 (2003), no. 4, 665–691. MR 2011345, DOI 10.1093/imanum/23.4.665
- Yinnian He, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal. 41 (2003), no. 4, 1263–1285. MR 2034880, DOI 10.1137/S0036142901385659
- Yinnian He and Kam-Moon Liu, A multilevel finite element method in space-time for the Navier-Stokes problem, Numer. Methods Partial Differential Equations 21 (2005), no. 6, 1052–1078. MR 2169167, DOI 10.1002/num.20077
- Yinnian He, Aiwen Wang, and Liquan Mei, Stabilized finite-element method for the stationary Navier-Stokes equations, J. Engrg. Math. 51 (2005), no. 4, 367–380. MR 2146399, DOI 10.1007/s10665-004-3718-5
- Yinnian He and Kaitai Li, Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations, Numer. Math. 79 (1998), no. 1, 77–106. MR 1608417, DOI 10.1007/s002110050332
- Yinnian He, Yanping Lin, and Weiwei Sun, Stabilized finite element method for the non-stationary Navier-Stokes problem, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 1, 41–68. MR 2172195, DOI 10.3934/dcdsb.2006.6.41
- John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275–311. MR 650052, DOI 10.1137/0719018
- John G. Heywood and Rolf Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization, SIAM J. Numer. Anal. 27 (1990), no. 2, 353–384. MR 1043610, DOI 10.1137/0727022
- Adrian T. Hill and Endre Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal. 20 (2000), no. 4, 633–667. MR 1795301, DOI 10.1093/imanum/20.4.633
- Kaitai Li and Yinnian He, Taylor expansion algorithm for the branching solution of the Navier-Stokes equations, Int. J. Numer. Anal. Model. 2 (2005), no. 4, 459–478. MR 2177873
- R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex polygon, J. Functional Analysis 21 (1976), no. 4, 397–431. MR 404849, DOI 10.1016/0022-1236(76)90035-5
- David Kay and David Silvester, A posteriori error estimation for stabilized mixed approximations of the Stokes equations, SIAM J. Sci. Comput. 21 (1999/00), no. 4, 1321–1336. MR 1740398, DOI 10.1137/S1064827598333715
- Nasserdine Kechkar and David Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp. 58 (1992), no. 197, 1–10. MR 1106973, DOI 10.1090/S0025-5718-1992-1106973-X
- Stig Larsson, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems, SIAM J. Numer. Anal. 26 (1989), no. 2, 348–365. MR 987394, DOI 10.1137/0726019
- Martine Marion and Jinchao Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal. 32 (1995), no. 4, 1170–1184. MR 1342288, DOI 10.1137/0732054
- Sean Norburn and David Silvester, Stabilised vs. stable mixed methods for incompressible flow, Comput. Methods Appl. Mech. Engrg. 166 (1998), no. 1-2, 131–141. MR 1660188, DOI 10.1016/S0045-7825(98)00087-5
- Juhani Pitkäranta and Tuomo Saarinen, A multigrid version of a simple finite element method for the Stokes problem, Math. Comp. 45 (1985), no. 171, 1–14. MR 790640, DOI 10.1090/S0025-5718-1985-0790640-2
- R. L. Sani, P. M. Gresho, R. L. Lee, and D. F. Griffiths, The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations. I, Internat. J. Numer. Methods Fluids 1 (1981), no. 1, 17–43. MR 608691, DOI 10.1002/fld.1650010104
- Jie Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal. 38 (1990), no. 4, 201–229. MR 1116181, DOI 10.1080/00036819008839963
- Jie Shen, On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes, Math. Comp. 65 (1996), no. 215, 1039–1065. MR 1348047, DOI 10.1090/S0025-5718-96-00750-8
- David Silvester and Andrew Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners, SIAM J. Numer. Anal. 31 (1994), no. 5, 1352–1367. MR 1293519, DOI 10.1137/0731070
- D. J. Silvester and N. Kechkar, Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. Methods Appl. Mech. Engrg. 79 (1990), no. 1, 71–86. MR 1044204, DOI 10.1016/0045-7825(90)90095-4
- Rolf Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach, Math. Comp. 42 (1984), no. 165, 9–23. MR 725982, DOI 10.1090/S0025-5718-1984-0725982-9
- Endre Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math. 53 (1988), no. 4, 459–483. MR 951325, DOI 10.1007/BF01396329
- Roger Temam, Navier-Stokes equations, 3rd ed., Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam, 1984. Theory and numerical analysis; With an appendix by F. Thomasset. MR 769654
- R. Verfürth, A multilevel algorithm for mixed problems, SIAM J. Numer. Anal. 21 (1984), no. 2, 264–271. MR 736330, DOI 10.1137/0721019
- Jinchao Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput. 15 (1994), no. 1, 231–237. MR 1257166, DOI 10.1137/0915016
- Jinchao Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal. 33 (1996), no. 5, 1759–1777. MR 1411848, DOI 10.1137/S0036142992232949
Bibliographic Information
- Yinnian He
- Affiliation: Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Email: heyn@mail.xjtu.edu.cn
- Weiwei Sun
- Affiliation: Department of Mathematics, City University of Hong Kong, Hong Kong, People’s Republic of China
- Email: maweiw@math.cityu.edu.hk
- Received by editor(s): November 22, 2004
- Received by editor(s) in revised form: September 2, 2005
- Published electronically: September 15, 2006
- Additional Notes: The first author was supported in part by the NSF of the People’s Republic of China (10371095).
The second author was supported in part by the Research Grants Council of the Hong Kong Special Administrative Region, People’s Republic of China (Project No. City U 102103). - © Copyright 2006 American Mathematical Society
- Journal: Math. Comp. 76 (2007), 115-136
- MSC (2000): Primary 35L70; Secondary 65N30, 76D06
- DOI: https://doi.org/10.1090/S0025-5718-06-01886-2
- MathSciNet review: 2261014