Shepard-Bernoulli operators
Authors:
R. Caira and F. Dell'Accio
Journal:
Math. Comp. 76 (2007), 299-321
MSC (2000):
Primary 41A05, 41A25; Secondary 65D05
DOI:
https://doi.org/10.1090/S0025-5718-06-01894-1
Published electronically:
August 8, 2006
MathSciNet review:
2261023
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce the Shepard-Bernoulli operator as a combination of the Shepard operator with a new univariate interpolation operator: the generalized Taylor polynomial. Some properties and the rate of convergence of the new combined operator are studied and compared with those given for classical combined Shepard operators. An application to the interpolation of discrete solutions of initial value problems is given.
- 1. Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; John Wiley & Sons, Inc., New York, 1984. Reprint of the 1972 edition; Selected Government Publications. MR 757537
- 2. Ravi P. Agarwal and Patricia J. Y. Wong, Error inequalities in polynomial interpolation and their applications, Mathematics and its Applications, vol. 262, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1449390
- 3. Kendall E. Atkinson, An introduction to numerical analysis, John Wiley & Sons, New York-Chichester-Brisbane, 1978. MR 504339
- 4. Robert E. Barnhill, Representation and approximation of surfaces, Mathematical software, III (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1977) Academic Press, New York, 1977, pp. 69–120. Publ. Math. Res. Center Univ. Wisconsin, No. 39. MR 0489081
- 5. Gheorghe Coman, Hermite-type Shepard operators, Rev. Anal. Numér. Théor. Approx. 26 (1997), no. 1-2, 33–38. MR 1703917
- 6. Gheorghe Coman, Shepard operators of Birkhoff-type, Calcolo 35 (1998), no. 4, 197–203. MR 1740751, https://doi.org/10.1007/s100920050016
- 7. Gh. Coman and L. Ţâmbulea, A Shepard-Taylor approximation formula, Studia Univ. Babeş-Bolyai Math. 33 (1988), no. 3, 65–73 (English, with Romanian summary). MR 1027361
- 8. Gheorghe Coman and Radu T. Trîmbiţaş, Combined Shepard univariate operators, East J. Approx. 7 (2001), no. 4, 471–483. MR 1882130
- 9. Gh. Coman, R.T. Trîmbitas, Shepard operators of Lagrange-type, Studia Univ. Babes-Bolyai Math. 42 (1997) 75-83.
- 10. Francesco Costabile, Expansions of real functions in Bernoulli polynomials and applications, Conf. Semin. Mat. Univ. Bari 273 (1999), 13. MR 1710747
- 11. F. A. Costabile and F. Dell’Accio, Expansion over a rectangle of real functions in Bernoulli polynomials and applications, BIT 41 (2001), no. 3, 451–464. MR 1854267, https://doi.org/10.1023/A:1021958910686
- 12. F. Costabile and F. Dell’Accio, Expansions over a simplex of real functions by means of Bernoulli polynomials, Numer. Algorithms 28 (2001), no. 1-4, 63–86. In memory of W. Gross. MR 1887748, https://doi.org/10.1023/A:1014074211736
- 13. Philip J. Davis, Interpolation and approximation, Dover Publications, Inc., New York, 1975. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. MR 0380189
- 14. B. Della Vecchia and G. Mastroianni, On functions approximation by Shepard-type operators—a survey, Approximation theory, wavelets and applications (Maratea, 1994) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 454, Kluwer Acad. Publ., Dordrecht, 1995, pp. 335–346. MR 1340899
- 15. Reinhard Farwig, Rate of convergence of Shepard’s global interpolation formula, Math. Comp. 46 (1986), no. 174, 577–590. MR 829627, https://doi.org/10.1090/S0025-5718-1986-0829627-0
- 16. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994. A foundation for computer science. MR 1397498
- 17. T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick, Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal. 9 (1972), 603–637; errata, ibid. 11 (1974), 681. MR 351086, https://doi.org/10.1137/0709052
- 18. Charles Jordan, Calculus of finite differences, Third Edition. Introduction by Harry C. Carver, Chelsea Publishing Co., New York, 1965. MR 0183987
- 19. R. J. Renka and A. K. Cline, A triangle-based 𝐶¹ interpolation method, Rocky Mountain J. Math. 14 (1984), no. 1, 223–237. Surfaces (Stanford, Calif., 1982). MR 736175, https://doi.org/10.1216/RMJ-1984-14-1-223
- 20. Robert J. Renka, Multivariate interpolation of large sets of scattered data, ACM Trans. Math. Software 14 (1988), no. 2, 139–148. MR 946761, https://doi.org/10.1145/45054.45055
- 21. R.J. Renka, Algorithm 660, QSHEP2D: Quadratic Shepard Method for Bivariate Interpolation of Scattered Data, ACM Trans. Math. Software 14 (1988) 149-150.
- 22. R.J. Renka, Algorithm 661, QSHEP3D: Quadratic Shepard Method for Trivariate Interpolation of Scattered Data, ACM Trans. Math. Software 14 (1988) 151-152.
- 23. Larry L. Schumaker, Fitting surfaces to scattered data, Approximation theory, II (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976) Academic Press, New York, 1976, pp. 203–268. MR 0426369
- 24. D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in: Proceedings of the 1968 23rd ACM National Conference, ACM Press, New York (1968) 517-524.
- 25. Maria Gabriela Trîmbiţaş, Combined Shepard-least square operators—computing them using spatial data structures, Studia Univ. Babeş-Bolyai Math. 47 (2002), no. 4, 119–128. MR 1993911
- 26. Carlos Zuppa, Error estimates for modified local Shepard’s interpolation formula, Appl. Numer. Math. 49 (2004), no. 2, 245–259. MR 2045501, https://doi.org/10.1016/j.apnum.2003.11.001
Retrieve articles in Mathematics of Computation with MSC (2000): 41A05, 41A25, 65D05
Retrieve articles in all journals with MSC (2000): 41A05, 41A25, 65D05
Additional Information
R. Caira
Affiliation:
Dipartimento di Matematica, Università della Calabria, 87036 Rende (Cs), Italy
Email:
caira@unical.it
F. Dell'Accio
Affiliation:
Dipartimento di Matematica, Università della Calabria, 87036 Rende (Cs), Italy
Email:
fdellacc@unical.it
DOI:
https://doi.org/10.1090/S0025-5718-06-01894-1
Keywords:
Univariate interpolation,
combined Shepard operator,
degree of exactness,
rate of convergence
Received by editor(s):
November 4, 2004
Received by editor(s) in revised form:
June 3, 2005
Published electronically:
August 8, 2006
Article copyright:
© Copyright 2006
American Mathematical Society