Superconvergence of the numerical traces of discontinuous Galerkin and Hybridized methods for convection-diffusion problems in one space dimension
HTML articles powered by AMS MathViewer
- by Fatih Celiker and Bernardo Cockburn;
- Math. Comp. 76 (2007), 67-96
- DOI: https://doi.org/10.1090/S0025-5718-06-01895-3
- Published electronically: August 7, 2006
- PDF | Request permission
Abstract:
In this paper, we uncover and study a new superconvergence property of a large class of finite element methods for one-dimensional convection-diffusion problems. This class includes discontinuous Galerkin methods defined in terms of numerical traces, discontinuous Petrov–Galerkin methods and hybridized mixed methods. We prove that the so-called numerical traces of both variables superconverge at all the nodes of the mesh, provided that the traces are conservative, that is, provided they are single-valued. In particular, for a local discontinuous Galerkin method, we show that the superconvergence is order $2 p+1$ when polynomials of degree at most $p$ are used. Extensive numerical results verifying our theoretical results are displayed.References
- Slimane Adjerid and Andreas Klauser, Superconvergence of discontinuous finite element solutions for transient convection-diffusion problems, J. Sci. Comput. 22/23 (2005), 5–24. MR 2142188, DOI 10.1007/s10915-004-4133-9
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7–32 (English, with French summary). MR 813687, DOI 10.1051/m2an/1985190100071
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Ivo Babuška and Miloš Zlámal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal. 10 (1973), 863–875. MR 345432, DOI 10.1137/0710071
- D. H. Bailey, A Fortran-90 Based Multiprecision System. ACM Transactions on Mathematical Software 21, no. 4 (1995), 379-387.
- Garth A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45–59. MR 431742, DOI 10.1090/S0025-5718-1977-0431742-5
- F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (Antwerpen, Belgium) (R. Decuypere and G. Dibelius, eds.), Technologisch Instituut, March 5–7 1997, pp. 99–108.
- Carlos Erik Baumann and J. Tinsley Oden, A discontinuous $hp$ finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 311–341. MR 1702201, DOI 10.1016/S0045-7825(98)00359-4
- Carlo L. Bottasso, Stefano Micheletti, and Riccardo Sacco, The discontinuous Petrov-Galerkin method for elliptic problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 31, 3391–3409. MR 1908187, DOI 10.1016/S0045-7825(02)00254-2
- F. Brezzi, G. Manzini, L. D. Marini, P. Pietra, and A. Russo, Discontinuous finite elements for diffusion problems, in Atti Convegno in onore di F. Brioschi (Milan 1997), Istituto Lombardo, Accademia di Scienze e Lettere, 1999, pp. 197–217.
- F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo, Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Partial Differential Equations 16 (2000), no. 4, 365–378. MR 1765651, DOI 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
- Paul Castillo, A superconvergence result for discontinuous Galerkin methods applied to elliptic problems, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 41-42, 4675–4685. MR 2012484, DOI 10.1016/S0045-7825(03)00445-6
- Paul Castillo, Bernardo Cockburn, Ilaria Perugia, and Dominik Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676–1706. MR 1813251, DOI 10.1137/S0036142900371003
- Paul Castillo, Bernardo Cockburn, Dominik Schötzau, and Christoph Schwab, Optimal a priori error estimates for the $hp$-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp. 71 (2002), no. 238, 455–478. MR 1885610, DOI 10.1090/S0025-5718-01-01317-5
- F. Celiker, Discontinuous Galerkin methods for Structural Mechanics, Ph.D. thesis, University of Minnesota, 2005.
- F. Celiker and B. Cockburn, Element-by-element post-processing of discontinuous Galerkin methods for Timoshenko beams, J. Sci. Comput., to appear.
- Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, DOI 10.1137/S0036142997316712
- M. Delfour, W. Hager, and F. Trochu, Discontinuous Galerkin methods for ordinary differential equations, Math. Comp. 36 (1981), no. 154, 455–473. MR 606506, DOI 10.1090/S0025-5718-1981-0606506-0
- Jim Douglas Jr. and Todd Dupont, Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces, Numer. Math. 22 (1974), 99–109. MR 362922, DOI 10.1007/BF01436724
- Todd Dupont, A unified theory of superconvergence for Galerkin methods for two-point boundary problems, SIAM J. Numer. Anal. 13 (1976), no. 3, 362–368. MR 408256, DOI 10.1137/0713032
- Mats G. Larson and A. Jonas Niklasson, Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case, Numer. Math. 99 (2004), no. 1, 113–130. MR 2101786, DOI 10.1007/s00211-004-0528-7
- P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Academic Press, New York-London, 1974, pp. 89–123. MR 658142
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin-New York, 1977, pp. 292–315. MR 483555
- Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I, Comput. Geosci. 3 (1999), no. 3-4, 337–360 (2000). MR 1750076, DOI 10.1023/A:1011591328604
- D. Schötzau, $hp$-DGFEM for parabolic evolution problems - applications to diffusion and viscous incompressible fluid flow, Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, 1999.
- Ch. Schwab, $p$- and $hp$-finite element methods, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics. MR 1695813
- J. A. Wheeler, Simulation of heat transfer from a warm pipe buried in permafrost, 74th National Meeting of the American Institute of Chemical Engineers, New Orleans (March, 1973).
- Mary Fanett Wheeler, A Galerkin procedure for estimating the flux for two-point boundary value problems, SIAM J. Numer. Anal. 11 (1974), 764–768. MR 383764, DOI 10.1137/0711062
- Zhimin Zhang, Finite element superconvergence approximation for one-dimensional singularly perturbed problems, Numer. Methods Partial Differential Equations 18 (2002), no. 3, 374–395. MR 1895005, DOI 10.1002/num.10001
- Zhi-min Zhang, On the $hp$ finite element method for the one dimensional singularly perturbed convection-diffusion problems, J. Comput. Math. 20 (2002), no. 6, 599–610. MR 1938640
Bibliographic Information
- Fatih Celiker
- Affiliation: School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, Minnesota 55455
- Email: celiker@math.umn.edu
- Bernardo Cockburn
- Affiliation: School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, Minnesota 55455
- Email: cockburn@math.umn.edu
- Received by editor(s): May 12, 2005
- Published electronically: August 7, 2006
- Additional Notes: The second author was partially supported by the National Science Foundation (Grant DMS-0411254) and by the Minnesota Supercomputing Institute.
- © Copyright 2006 American Mathematical Society
- Journal: Math. Comp. 76 (2007), 67-96
- MSC (2000): Primary 65M60, 65N30, 35L65
- DOI: https://doi.org/10.1090/S0025-5718-06-01895-3
- MathSciNet review: 2261012