Heuristics for class numbers and lambda invariants
Authors:
James S. Kraft and Lawrence C. Washington
Journal:
Math. Comp. 76 (2007), 1005-1023
MSC (2000):
Primary 11R23, 11R29, 11R11
DOI:
https://doi.org/10.1090/S0025-5718-06-01921-1
Published electronically:
October 30, 2006
MathSciNet review:
2291847
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be an imaginary quadratic field and let
be the associated real quadratic field. Starting from the Cohen-Lenstra heuristics and Scholz's theorem, we make predictions for the behaviors of the 3-parts of the class groups of these two fields as
varies. We deduce heuristic predictions for the behavior of the Iwasawa
-invariant for the cyclotomic
-extension of
and test them computationally.
- 1. H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, https://doi.org/10.1007/BFb0099440
- 2. D. S. Dummit, D. Ford, H. Kisilevsky, and J. W. Sands, Computation of Iwasawa lambda invariants for imaginary quadratic fields, J. Number Theory 37 (1991), no. 1, 100–121. MR 1089792, https://doi.org/10.1016/S0022-314X(05)80027-7
- 3. Philippe Dutarte, Compatibilité avec le Spiegelungssatz de probabilités conjecturales sur le 𝑝-rang du groupe des classes, Number theory (Besançon), 1983–1984, Publ. Math. Fac. Sci. Besançon, Univ. Franche-Comté, Besançon, 1984, pp. Exp. No. 4, 11 (French). MR 803700
- 4. Bruce Ferrero, The cyclotomic 𝑍₂-extension of imaginary quadratic fields, Amer. J. Math. 102 (1980), no. 3, 447–459. MR 573095, https://doi.org/10.2307/2374108
- 5. Yûji Kida, On cyclotomic 𝑍₂-extensions of imaginary quadratic fields, Tohoku Math. J. (2) 31 (1979), no. 1, 91–96. MR 526512, https://doi.org/10.2748/tmj/1178229880
- 6. James S. Kraft, Class numbers and Iwasawa invariants of quadratic fields, Proc. Amer. Math. Soc. 124 (1996), no. 1, 31–34. MR 1301510, https://doi.org/10.1090/S0002-9939-96-03085-7
- 7. A. Scholz, ``Über die Beziehung der Klassenzahlen quadratischen Körper zueinander,'' J. reine angew. Math., 166 (1931), 201-203.
- 8. Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674
Retrieve articles in Mathematics of Computation with MSC (2000): 11R23, 11R29, 11R11
Retrieve articles in all journals with MSC (2000): 11R23, 11R29, 11R11
Additional Information
James S. Kraft
Affiliation:
The Ingenuity Project, Baltimore Polytechnic Institute, 1400 W. Cold Spring Lane, Baltimore, Maryland 21209
Email:
jkraft31@comcast.net
Lawrence C. Washington
Affiliation:
Department of Mathematics, University of Maryland, College Park, Maryland 20742
Email:
lcw@math.umd.edu
DOI:
https://doi.org/10.1090/S0025-5718-06-01921-1
Received by editor(s):
August 23, 2005
Received by editor(s) in revised form:
January 6, 2006
Published electronically:
October 30, 2006
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.