On interpolatory divergence-free wavelets
HTML articles powered by AMS MathViewer
- by Kai Bittner and Karsten Urban;
- Math. Comp. 76 (2007), 903-929
- DOI: https://doi.org/10.1090/S0025-5718-06-01949-1
- Published electronically: December 28, 2006
- PDF | Request permission
Abstract:
We construct interpolating divergence-free multiwavelets based on cubic Hermite splines. We give characterizations of the relevant function spaces and indicate their use for analyzing experimental data of incompressible flow fields. We also show that the standard interpolatory wavelets, based on the Deslauriers-Dubuc interpolatory scheme or on interpolatory splines, cannot be used to construct compactly supported divergence-free interpolatory wavelets.References
- Cem M. Albukrek, Karsten Urban, Dietmar Rempfer, and John L. Lumley, Divergence-free wavelet analysis of turbulent flows, Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), 2002, pp. 49–66. MR 1910551, DOI 10.1023/A:1015184110888
- Amir Z. Averbuch and Valery A. Zheludev, Lifting scheme for biorthogonal multiwavelets originated from Hermite splines, IEEE Trans. Signal Process. 50 (2002), no. 3, 487–500. MR 1895057, DOI 10.1109/78.984720
- Guy Battle and Paul Federbush, Divergence-free vector wavelets, Michigan Math. J. 40 (1993), no. 1, 181–195. MR 1214063, DOI 10.1307/mmj/1029004682
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 482275
- Oleg V. Besov, Valentin P. Il′in, and Sergey M. Nikol′skiĭ, Integral representations of functions and imbedding theorems. Vol. I, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DC; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian; Edited by Mitchell H. Taibleson. MR 519341
- Claudio Canuto, Anita Tabacco, and Karsten Urban, The wavelet element method. I. Construction and analysis, Appl. Comput. Harmon. Anal. 6 (1999), no. 1, 1–52. MR 1664902, DOI 10.1006/acha.1997.0242
- Claudio Canuto, Anita Tabacco, and Karsten Urban, The wavelet element method. II. Realization and additional features in 2D and 3D, Appl. Comput. Harmon. Anal. 8 (2000), no. 2, 123–165. MR 1743533, DOI 10.1006/acha.2000.0282
- J. M. Carnicer, W. Dahmen, and J. M. Peña, Local decomposition of refinable spaces and wavelets, Appl. Comput. Harmon. Anal. 3 (1996), no. 2, 127–153. MR 1385049, DOI 10.1006/acha.1996.0012
- Albert Cohen, Wavelet methods in numerical analysis, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 417–711. MR 1804747
- A. Cohen and R. Masson, Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition, Numer. Math. 86 (2000), no. 2, 193–238. MR 1777487, DOI 10.1007/PL00005404
- W. Dahmen, B. Han, R.-Q. Jia, and A. Kunoth, Biorthogonal multiwavelets on the interval: cubic Hermite splines, Constr. Approx. 16 (2000), no. 2, 221–259. MR 1735242, DOI 10.1007/s003659910010
- Wolfgang Dahmen and Reinhold Schneider, Composite wavelet bases for operator equations, Math. Comp. 68 (1999), no. 228, 1533–1567. MR 1648379, DOI 10.1090/S0025-5718-99-01092-3
- Wolfgang Dahmen and Reinhold Schneider, Wavelets on manifolds. I. Construction and domain decomposition, SIAM J. Math. Anal. 31 (1999), no. 1, 184–230. MR 1742299, DOI 10.1137/S0036141098333451
- Wolfgang Dahmen and Rob Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal. 37 (1999), no. 1, 319–352. MR 1742747, DOI 10.1137/S0036142997330949
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
- D. Donoho, Interpolating wavelet transforms, Preprint, Standford University, 1992.
- Paul Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993), no. 2, 219–248. MR 1230026
- Say Song Goh, Qingtang Jiang, and Tao Xia, Construction of biorthogonal multiwavelets using the lifting scheme, Appl. Comput. Harmon. Anal. 9 (2000), no. 3, 336–352. MR 1793422, DOI 10.1006/acha.2000.0318
- B. Han, Hermite interpolants and biorthogonal multiwavelets with arbitrary order of vanishing moments, Wavelet Applications in Signal and Image Processing VII (A. Aldroubi, M.A. Unser, and A.F. Laine, eds.), vol. 3813, Proc. SPIE, 1999, pp. 147–161.
- Bin Han, Thomas P.-Y. Yu, and Bruce Piper, Multivariate refinable Hermite interpolant, Math. Comp. 73 (2004), no. 248, 1913–1935. MR 2059743, DOI 10.1090/S0025-5718-03-01623-5
- Christopher Heil, Gilbert Strang, and Vasily Strela, Approximation by translates of refinable functions, Numer. Math. 73 (1996), no. 1, 75–94. MR 1379281, DOI 10.1007/s002110050185
- Nicholas K.-R. Kevlahan and Oleg V. Vasilyev, An adaptive wavelet collocation method for fluid-structure interaction at high Reynolds numbers, SIAM J. Sci. Comput. 26 (2005), no. 6, 1894–1915. MR 2196581, DOI 10.1137/S1064827503428503
- F. Koster, M. Griebel, N. K.-R. Kevlahan, M. Farge, and K. Schneider, Towards an adaptive wavelet-based 3D Navier-Stokes solver, Numerical flow simulation, I (Marseille, 1997) Notes Numer. Fluid Mech., vol. 66, Friedr. Vieweg, Braunschweig, 1998, pp. 339–364. MR 1668783, DOI 10.1007/978-3-663-10916-7_{1}7
- Joseph D. Lakey, Peter R. Massopust, and Maria C. Pereyra, Divergence-free multiwavelets, Approximation theory IX, Vol. 2 (Nashville, TN, 1998) Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 1998, pp. 161–168. MR 1744404
- Joseph D. Lakey and María Cristina Pereyra, Divergence-free multiwavelets on rectangular domains, Wavelet analysis and multiresolution methods (Urbana-Champaign, IL, 1999) Lecture Notes in Pure and Appl. Math., vol. 212, Dekker, New York, 2000, pp. 203–240. MR 1777994
- Pierre Gilles Lemarie-Rieusset, Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle, Rev. Mat. Iberoamericana 8 (1992), no. 2, 221–237 (French, with English and French summaries). MR 1191345, DOI 10.4171/RMI/123
- Pierre-Gilles Lemarié-Rieusset, Un théorème d’inexistence pour les ondelettes vecteurs à divergence nulle, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 8, 811–813 (French, with English and French summaries). MR 1300948
- P. G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. MR 1938147, DOI 10.1201/9781420035674
- Charles A. Micchelli, Interpolatory subdivision schemes and wavelets, J. Approx. Theory 86 (1996), no. 1, 41–71. MR 1397613, DOI 10.1006/jath.1996.0054
- Larry L. Schumaker, Spline functions: basic theory, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. A Wiley-Interscience Publication. MR 606200
- Wim Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal. 29 (1998), no. 2, 511–546. MR 1616507, DOI 10.1137/S0036141095289051
- Karsten Urban, On divergence-free wavelets, Adv. Comput. Math. 4 (1995), no. 1-2, 51–81. MR 1338895, DOI 10.1007/BF02123473
- Karsten Urban, Wavelet bases in $H(\rm div)$ and $H(\rm curl)$, Math. Comp. 70 (2001), no. 234, 739–766. MR 1710628, DOI 10.1090/S0025-5718-00-01245-X
- Karsten Urban, Wavelets in numerical simulation, Lecture Notes in Computational Science and Engineering, vol. 22, Springer-Verlag, Berlin, 2002. Problem adapted construction and applications. MR 1918770, DOI 10.1007/978-3-642-56002-6
- O. V. Vasilyev and N. K.-R. Kevlahan, Hybrid wavelet collocation—Brinkman penalization method for complex geometry flows, Internat. J. Numer. Methods Fluids 40 (2002), no. 3-4, 531–538. ICFD Conference on Numerical Methods for Fluid Dynamics, Part II (Oxford, 2001). MR 1932995, DOI 10.1002/fld.307
- Oleg V. Vasilyev and Christopher Bowman, Second-generation wavelet collocation method for the solution of partial differential equations, J. Comput. Phys. 165 (2000), no. 2, 660–693. MR 1807301, DOI 10.1006/jcph.2000.6638
- Oleg V. Vasilyev and Nicholas K.-R. Kevlahan, An adaptive multilevel wavelet collocation method for elliptic problems, J. Comput. Phys. 206 (2005), no. 2, 412–431. MR 2143325, DOI 10.1016/j.jcp.2004.12.013
Bibliographic Information
- Kai Bittner
- Affiliation: University of Ulm, Institute for Numerical Mathematics, Helmholtzstr. 18, D-89069 Ulm, Germany
- Email: kai.bittner@uni-ulm.de
- Karsten Urban
- Affiliation: University of Ulm, Institute for Numerical Mathematics, Helmholtzstr. 18, D-89069 Ulm, Germany
- Email: karsten.urban@uni-ulm.de
- Received by editor(s): March 18, 2005
- Received by editor(s) in revised form: March 13, 2006
- Published electronically: December 28, 2006
- Additional Notes: We are grateful to Nicolas Kevlahan for bringing our attention to the topic of this paper.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 903-929
- MSC (2000): Primary 42C40, 35Q30, 41A15
- DOI: https://doi.org/10.1090/S0025-5718-06-01949-1
- MathSciNet review: 2291842