Stabilized finite element method for Navier–Stokes equations with physical boundary conditions
HTML articles powered by AMS MathViewer
- by M. Amara, D. Capatina-Papaghiuc and D. Trujillo;
- Math. Comp. 76 (2007), 1195-1217
- DOI: https://doi.org/10.1090/S0025-5718-07-01929-1
- Published electronically: March 15, 2007
- PDF | Request permission
Abstract:
This paper deals with the numerical approximation of the 2D and 3D Navier-Stokes equations, satisfying nonstandard boundary conditions. This lays on the finite element discretisation of the corresponding Stokes problem, which is achieved through a three-fields stabilized mixed formulation. A priori and a posteriori error bounds are established for the nonlinear problem, ascertaining the convergence of the method. Finally, numerical tests are presented, including mesh refinement via error indicators.References
- Mohamed Amara and Christine Bernardi, Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation, M2AN Math. Model. Numer. Anal. 33 (1999), no. 5, 1033–1056 (English, with English and French summaries). MR 1726723, DOI 10.1051/m2an:1999133
- Amara, M., Capatina-Papaghiuc, D., Trujillo, D.: Stabilized method for the Navier-Stokes equations with nonstandard boundary conditions, Preprint LMA UPPA, n. 0325, p. 1- 29 (2003) (http://lma.univ-pau.fr/publis/publis_pre.php)
- Amara, M., Capatina-Papaghiuc, D., Trujillo, D.: A 3D numerical model for the vorticity-velocity-pressure formulation of the Navier-Stokes problem, Preprint LMA UPPA, n. 0510, p.1-11 (2005) (http://lma.univ-pau.fr/publis/publis_pre.php)
- M. Amara, E. Chacón Vera, and D. Trujillo, Vorticity-velocity-pressure formulation for Stokes problem, Math. Comp. 73 (2004), no. 248, 1673–1697. MR 2059731, DOI 10.1090/S0025-5718-03-01615-6
- C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements, SIAM J. Numer. Anal. 35 (1998), no. 5, 1893–1916. MR 1639966, DOI 10.1137/S0036142995293766
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- F. Brezzi, J. Rappaz, and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions, Numer. Math. 36 (1980/81), no. 1, 1–25. MR 595803, DOI 10.1007/BF01395985
- Gabriel Caloz and Jacques Rappaz, Numerical analysis for nonlinear and bifurcation problems, Handbook of numerical analysis, Vol. V, Handb. Numer. Anal., V, North-Holland, Amsterdam, 1997, pp. 487–637. MR 1470227, DOI 10.1016/S1570-8659(97)80004-X
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- C. Conca, C. Parés, O. Pironneau, and M. Thiriet, Navier-Stokes equations with imposed pressure and velocity fluxes, Internat. J. Numer. Methods Fluids 20 (1995), no. 4, 267–287. MR 1316046, DOI 10.1002/fld.1650200402
- Martin Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains, Math. Methods Appl. Sci. 12 (1990), no. 4, 365–368. MR 1048563, DOI 10.1002/mma.1670120406
- François Dubois, Michel Salaün, and Stéphanie Salmon, Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem, J. Math. Pures Appl. (9) 82 (2003), no. 11, 1395–1451 (English, with English and French summaries). MR 2020806, DOI 10.1016/j.matpur.2003.09.002
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems, Numer. Math. 69 (1994), no. 2, 213–231. MR 1310318, DOI 10.1007/s002110050088
Bibliographic Information
- M. Amara
- Affiliation: Laboratoire de Mathématiques Appliquées-CNRS UMR5142, Université de Pau et des Pays de l’Adour, BP 1155, 64013 PAU CEDEX
- Email: mohamed.amara@univ-pau.fr
- D. Capatina-Papaghiuc
- Affiliation: Laboratoire de Mathématiques Appliquées-CNRS UMR5142, Université de Pau et des Pays de l’Adour, BP 1155, 64013 PAU CEDEX
- Email: daniela.capatina@univ-pau.dr
- D. Trujillo
- Affiliation: Laboratoire de Mathématiques Appliquées-CNRS UMR5142, Université de Pau et des Pays de l’Adour, BP 1155, 64013 PAU CEDEX
- Email: david.trujillo@univ-pau.fr
- Received by editor(s): June 4, 2004
- Received by editor(s) in revised form: July 6, 2005
- Published electronically: March 15, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 1195-1217
- MSC (2000): Primary 35Q30, 65N12; Secondary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-07-01929-1
- MathSciNet review: 2299771