## Euclidean minima of totally real number fields: Algorithmic determination

HTML articles powered by AMS MathViewer

- by Jean-Paul Cerri PDF
- Math. Comp.
**76**(2007), 1547-1575 Request permission

## Abstract:

This article deals with the determination of the Euclidean minimum $M(K)$ of a totally real number field $K$ of degree $n\geq 2$, using techniques from the geometry of numbers. Our improvements of existing algorithms allow us to compute Euclidean minima for fields of degree $2$ to $8$ and small discriminants, most of which were previously unknown. Tables are given at the end of this paper.## References

- The A2X laboratory, Number field tables available from ftp://megrez.math.u-bordeaux.fr/pub/numberfields.
- E. S. Barnes and H. P. F. Swinnerton-Dyer,
*The inhomogeneous minima of binary quadratic forms. I*, Acta Math.**87**(1952), 259–323. MR**53162**, DOI 10.1007/BF02392288 - J. W. S. Cassels,
*An introduction to the geometry of numbers*, Die Grundlehren der mathematischen Wissenschaften, Band 99, Springer-Verlag, Berlin-New York, 1971. Second printing, corrected. MR**0306130** - Jean-Paul Cerri,
*De l’euclidianité de $\Bbb Q\left (\sqrt {2+\sqrt {2+\sqrt 2}}\right )$ et $\Bbb Q\left (\sqrt {2+\sqrt 2}\right )$ pour la norme*, J. Théor. Nombres Bordeaux**12**(2000), no. 1, 103–126 (French, with English and French summaries). MR**1827842** - J-P. Cerri, Euclidean and inhomogeneous spectra of number fields with unit rank greater than $1$ (to appear in
*Journal für die Reine und Angewandte Mathematik*). - J-P. Cerri, Spectres euclidiens et inhomogènes des corps de nombres,
*Thèse de Doctorat, Université Henri Poincaré, Nancy*(2005) available from http://tel.ccsd.cnrs.fr/tel-00011151. - J-P. Cerri, Tables of Euclidean minima of totally real number fields, available from ftp://megrez.math.u-bordeaux.fr/pub/cerri
- Stefania Cavallar and Franz Lemmermeyer,
*The Euclidean algorithm in cubic number fields*, Number theory (Eger, 1996) de Gruyter, Berlin, 1998, pp. 123–146. MR**1628838**, DOI 10.1023/A:1008244007194 - Harvey Cohn and Jesse Deutsch,
*Use of a computer scan to prove $\textbf {Q}(\sqrt {2+\sqrt 2})$ and $\textbf {Q}(\sqrt {3+\sqrt 2})$ are Euclidean*, Math. Comp.**46**(1986), no. 173, 295–299. MR**815850**, DOI 10.1090/S0025-5718-1986-0815850-8 - J. Klüners, Tables available at http://www.mathematik.uni-kassel.de/~klueners
- Franz Lemmermeyer,
*The Euclidean algorithm in algebraic number fields*, Exposition. Math.**13**(1995), no. 5, 385–416. MR**1362867** - C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, The Pari/GP system, http://pari.math.u-bordeaux.fr
- Roland Quême,
*A computer algorithm for finding new Euclidean number fields*, J. Théor. Nombres Bordeaux**10**(1998), no. 1, 33–48 (English, with English and French summaries). MR**1827284** - W. T. Tutte,
*Graph theory*, Encyclopedia of Mathematics and its Applications, vol. 21, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. With a foreword by C. St. J. A. Nash-Williams. MR**746795**

## Additional Information

**Jean-Paul Cerri**- Affiliation: 2, route de Saint-Dié, F-88600 Aydoilles, France
- Email: jean-paul.cerri@wanadoo.fr
- Received by editor(s): May 9, 2004
- Received by editor(s) in revised form: February 21, 2006
- Published electronically: February 27, 2007
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**76**(2007), 1547-1575 - MSC (2000): Primary 11Y40; Secondary 11R04, 12J15, 13F07
- DOI: https://doi.org/10.1090/S0025-5718-07-01932-1
- MathSciNet review: 2299788