Computation of capacity
Authors:
Thomas Ransford and Jérémie Rostand
Journal:
Math. Comp. 76 (2007), 1499-1520
MSC (2000):
Primary 65E05; Secondary 31A15, 90C05
DOI:
https://doi.org/10.1090/S0025-5718-07-01941-2
Published electronically:
January 24, 2007
MathSciNet review:
2299786
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This article introduces a method for computing upper and lower bounds for the logarithmic capacity of a compact plane set. If the set has the Hölder continuity property, then these bounds converge to the value of the capacity. A number of examples are discussed in detail, including the Cantor middle-third set, for which we estimate $c(E)\approx 0.220949102189507$.
- Line Baribeau, Dominique Brunet, Thomas Ransford, and Jérémie Rostand, Iterated function systems, capacity and Green’s functions, Comput. Methods Funct. Theory 4 (2004), no. 1, 47–58. MR 2081665, DOI https://doi.org/10.1007/BF03321055
- Jarle Berntsen, Terje O. Espelid, and Alan Genz, Algorithm 698: DCUHRE: an adaptive multidimensional integration routine for a vector of integrals, ACM Trans. Math. Software 17 (1991), no. 4, 452–456. MR 1140035, DOI https://doi.org/10.1145/210232.210234
- David G. Cantor, On an extension of the definition of transfinite diameter and some applications, J. Reine Angew. Math. 316 (1980), 160–207. MR 581330, DOI https://doi.org/10.1515/crll.1980.316.160
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383
- Lennart Carleson and Vilmos Totik, Hölder continuity of Green’s functions, Acta Sci. Math. (Szeged) 70 (2004), no. 3-4, 557–608. MR 2107529
- T. A. Driscoll, Algorithm 756: A MATLAB toolbox for Schwarz-Christoffel mapping, ACM Trans. Math. Software, 22 (1996), 168–186; http://www.math.udel.edu/ driscoll/SC.
- Mark Embree and Lloyd N. Trefethen, Green’s functions for multiply connected domains via conformal mapping, SIAM Rev. 41 (1999), no. 4, 745–761. MR 1722999, DOI https://doi.org/10.1137/S0036144598349277
- Kenneth Falconer, Fractal geometry, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003. Mathematical foundations and applications. MR 2118797
- Sanjay Mehrotra, On the implementation of a primal-dual interior point method, SIAM J. Optim. 2 (1992), no. 4, 575–601. MR 1186163, DOI https://doi.org/10.1137/0802028
- Christian Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. MR 0507768
- Ch. Pommerenke, Uniformly perfect sets and the Poincaré metric, Arch. Math. (Basel) 32 (1979), no. 2, 192–199. MR 534933, DOI https://doi.org/10.1007/BF01238490
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766
- Jérémie Rostand, Computing logarithmic capacity with linear programming, Experiment. Math. 6 (1997), no. 3, 221–238. MR 1481591
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
- Jianhua Wang, The theory of games, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York; The Clarendon Press, Oxford University Press, New York, 1988. Translated from the Chinese; Oxford Science Publications. MR 969605
- Harold Widom, Extremal polynomials associated with a system of curves in the complex plane, Advances in Math. 3 (1969), 127–232. MR 239059, DOI https://doi.org/10.1016/0001-8708%2869%2990005-X
Retrieve articles in Mathematics of Computation with MSC (2000): 65E05, 31A15, 90C05
Retrieve articles in all journals with MSC (2000): 65E05, 31A15, 90C05
Additional Information
Thomas Ransford
Affiliation:
Département de mathématiques et de statistique, Université Laval, Québec (QC), Canada G1K 7P4
MR Author ID:
204108
Email:
ransford@mat.ulaval.ca
Jérémie Rostand
Affiliation:
Département de mathématiques et de statistique, Université Laval, Québec (QC), Canada G1K 7P4
Email:
jrostand@mat.ulaval.ca
Keywords:
Capacity,
matrix game,
Hölder continuity property,
Cantor set
Received by editor(s):
January 18, 2005
Received by editor(s) in revised form:
July 6, 2005
Published electronically:
January 24, 2007
Additional Notes:
The first author was supported by grants from NSERC and the Canada Research Chairs program
The second author was supported by a grant from NSERC
Article copyright:
© Copyright 2007
American Mathematical Society