Parabolic and hyperbolic contours for computing the Bromwich integral
HTML articles powered by AMS MathViewer
- by J. A. C. Weideman and L. N. Trefethen;
- Math. Comp. 76 (2007), 1341-1356
- DOI: https://doi.org/10.1090/S0025-5718-07-01945-X
- Published electronically: March 7, 2007
- PDF | Request permission
Abstract:
Some of the most effective methods for the numerical inversion of the Laplace transform are based on the approximation of the Bromwich contour integral. The accuracy of these methods often hinges on a good choice of contour, and several such contours have been proposed in the literature. Here we analyze two recently proposed contours, namely a parabola and a hyperbola. Using a representative model problem, we determine estimates for the optimal parameters that define these contours. An application to a fractional diffusion equation is presented.References
- Ivan P. Gavrilyuk and Vladimir L. Makarov, Exponentially convergent parallel discretization methods for the first order evolution equations, Comput. Methods Appl. Math. 1 (2001), no. 4, 333–355. MR 1892950, DOI 10.2478/cmam-2001-0022
- M. López-Fernández and C. Palencia, On the numerical inversion of the Laplace transform of certain holomorphic mappings, Appl. Numer. Math. 51 (2004), no. 2-3, 289–303. MR 2091405, DOI 10.1016/j.apnum.2004.06.015
- María López-Fernández, César Palencia, and Achim Schädle, A spectral order method for inverting sectorial Laplace transforms, SIAM J. Numer. Anal. 44 (2006), no. 3, 1332–1350. MR 2231867, DOI 10.1137/050629653
- Francesco Mainardi, Gianni Pagnini, and R. K. Saxena, Fox $H$ functions in fractional diffusion, J. Comput. Appl. Math. 178 (2005), no. 1-2, 321–331. MR 2127888, DOI 10.1016/j.cam.2004.08.006
- Erich Martensen, Zur numerischen Auswertung uneigenlicher Integrale, Z. Angew. Math. Mech. 48 (1968), T83–T85 (German). MR 256565
- William McLean and Vidar Thomée, Time discretization of an evolution equation via Laplace transforms, IMA J. Numer. Anal. 24 (2004), no. 3, 439–463. MR 2068831, DOI 10.1093/imanum/24.3.439
- Mariarosaria Rizzardi, A modification of Talbot’s method for the simultaneous approximation of several values of the inverse Laplace transform, ACM Trans. Math. Software 21 (1995), no. 4, 347–371. MR 1364695, DOI 10.1145/212066.212068
- H.-R. Schwarz, Numerical analysis, John Wiley & Sons, Ltd., Chichester, 1989. A comprehensive introduction; With a contribution by J. Waldvogel; Translated from the German. MR 1005534
- Dongwoo Sheen, Ian H. Sloan, and Vidar Thomée, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal. 23 (2003), no. 2, 269–299. MR 1975267, DOI 10.1093/imanum/23.2.269
- A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl. 23 (1979), no. 1, 97–120. MR 526286
- Lloyd N. Trefethen, Spectral methods in MATLAB, Software, Environments, and Tools, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. MR 1776072, DOI 10.1137/1.9780898719598
- L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational approximations, BIT 46 (2006), no. 3, 653–670. MR 2265580, DOI 10.1007/s10543-006-0077-9
- J. A. C. Weideman, Computing special functions via inverse Laplace transforms, International Conference on Numerical Analysis and Applied Mathematics 2005 (Rhodes) (T.E. Simos, G. Psihoyios, and Ch. Tsitouras, eds.), Wiley-VCH, 2005, pp. 702–704.
- —, Optimizing Talbot’s contours for the inversion of the Laplace transform, SIAM J. Numer. Anal. 44 (2006), no. 6, 2342–2362.
- J. A. C. Weideman and S. C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Software 26 (2000), no. 4, 465–519. MR 1939962, DOI 10.1145/365723.365727
- J. A. C. Weideman and L. N. Trefethen, The eigenvalues of second-order spectral differentiation matrices, SIAM J. Numer. Anal. 25 (1988), no. 6, 1279–1298. MR 972454, DOI 10.1137/0725072
Bibliographic Information
- J. A. C. Weideman
- Affiliation: Department of Applied Mathematics, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Email: weideman@dip.sun.ac.za
- L. N. Trefethen
- Affiliation: Oxford University Computing Laboratory, Wolfson Bldg., Parks Road, Oxford OX1 3QD, United Kingdom
- MR Author ID: 174135
- Email: LNT@comlab.ox.ac.uk
- Received by editor(s): December 9, 2005
- Published electronically: March 7, 2007
- Additional Notes: The first author was supported by the National Research Foundation in South Africa under grant FA2005032300018
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 1341-1356
- MSC (2000): Primary 65D30, 44A10
- DOI: https://doi.org/10.1090/S0025-5718-07-01945-X
- MathSciNet review: 2299777