New integer representations as the sum of three cubes
HTML articles powered by AMS MathViewer
- by Michael Beck, Eric Pine, Wayne Tarrant and Kim Yarbrough Jensen;
- Math. Comp. 76 (2007), 1683-1690
- DOI: https://doi.org/10.1090/S0025-5718-07-01947-3
- Published electronically: March 14, 2007
- PDF | Request permission
Abstract:
We describe a new algorithm for finding integer solutions to $x^3 + y^3 + z^3 = k$ for specific values of $k$. We use this to find representations for values of $k$ for which no solution was previously known, including $k=30$ and $k=52$.References
- Eric Bach and Jeffrey Shallit, Algorithmic number theory. Vol. 1, Foundations of Computing Series, MIT Press, Cambridge, MA, 1996. Efficient algorithms. MR 1406794
- Andrew Bremner, On sums of three cubes, Number theory (Halifax, NS, 1994) CMS Conf. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 1995, pp. 87–91. MR 1353923, DOI 10.1006/jnth.1995.1021
- J. W. S. Cassels, A note on the Diophantine equation $x^3+y^3+z^3=3$, Math. Comp. 44 (1985), no. 169, 265–266. MR 771049, DOI 10.1090/S0025-5718-1985-0771049-4
- W. Conn and L. N. Vaserstein, On sums of three integral cubes, The Rademacher legacy to mathematics (University Park, PA, 1992) Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 285–294. MR 1284068, DOI 10.1090/conm/166/01628
- Noam Elkies, $<$elkies@abel.math.harvard.edu$>$ “x^3 + y^3 + z^3 = d," 9 July 1996, $<$nmbrthry@listserv.nodak.edu$>$ via $<$http://listserv.nodak.edu/archives/nmbrthry.html$>$.
- V. L. Gardiner, R. B. Lazarus, and P. R. Stein, Solutions of the diophantine equation $x^{3}+y^{3}=z^{3}-d$, Math. Comp. 18 (1964), 408–413. MR 175843, DOI 10.1090/S0025-5718-1964-0175843-9
- D. R. Heath-Brown, Searching for solutions of $x^3+y^3+z^3=k$, Séminaire de Théorie des Nombres, Paris, 1989–90, Progr. Math., vol. 102, Birkhäuser Boston, Boston, MA, 1992, pp. 71–76. MR 1476729, DOI 10.1007/978-1-4757-4269-5_{6}
- D. R. Heath-Brown, W. M. Lioen, and H. J. J. te Riele, On solving the Diophantine equation $x^3+y^3+z^3=k$ on a vector computer, Math. Comp. 61 (1993), no. 203, 235–244. MR 1202610, DOI 10.1090/S0025-5718-1993-1202610-5
- Kenji Koyama, Tables of solutions of the Diophantine equation $x^3 + y^3 + z^3 = n$, Mathematics of Computation 62 (1994), 941–942.
- Kenji Koyama, Yukio Tsuruoka, and Hiroshi Sekigawa, On searching for solutions of the Diophantine equation $x^3+y^3+z^3=n$, Math. Comp. 66 (1997), no. 218, 841–851. MR 1401942, DOI 10.1090/S0025-5718-97-00830-2
- D. H. Lehmer, On the Diophantine equation $x^3+y^3+z^3=1$, J. London Math. Soc. 31 (1956), 275–280. MR 78397, DOI 10.1112/jlms/s1-31.3.275
- Richard F. Lukes, A Very Fast Electronic Number Sieve, University of Manitoba doctoral thesis, 1995.
- Kurt Mahler, Note On Hypothesis K of Hardy and Littlewood, Journal of the London Mathematical Society 11 (1936), 136–138.
- J. C. P. Miller and M. F. C. Woollett, Solutions of the Diophantine equation $x^3+y^3+z^3=k$, J. London Math. Soc. 30 (1955), 101–110. MR 67916, DOI 10.1112/jlms/s1-30.1.101
- L. J. Mordell, On sums of three cubes, J. London Math. Soc. 17 (1942), 139–144. MR 7761, DOI 10.1112/jlms/s1-17.3.139
- L. J. Mordell, On an infinity of integer solutions of $ax^3+ay^3+bz^3=bc^3$, J. London Math. Soc. 30 (1955), 111–113. MR 67917, DOI 10.1112/jlms/s1-30.1.111
- S. Ryley, The Ladies’ Diary 122 (1825), 35.
- Manny Scarowsky and Abraham Boyarsky, A note on the Diophantine equation $x^{n}+y^{n}+z^{n}=3$, Math. Comp. 42 (1984), no. 165, 235–237. MR 726000, DOI 10.1090/S0025-5718-1984-0726000-9
- Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 2nd ed., Cours Spécialisés [Specialized Courses], vol. 1, Société Mathématique de France, Paris, 1995 (French). MR 1366197
- R. C. Vaughan, A new iterative method in Waring’s problem, Acta Math. 162 (1989), no. 1-2, 1–71. MR 981199, DOI 10.1007/BF02392834
Bibliographic Information
- Michael Beck
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- Email: mbeck@math.uga.edu
- Eric Pine
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- Email: epine@math.uga.edu
- Wayne Tarrant
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- Kim Yarbrough Jensen
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- Received by editor(s): February 7, 2002
- Received by editor(s) in revised form: October 8, 2005
- Published electronically: March 14, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 1683-1690
- MSC (2000): Primary 11D25; Secondary 11Y50, 11N36
- DOI: https://doi.org/10.1090/S0025-5718-07-01947-3
- MathSciNet review: 2299795