## New integer representations as the sum of three cubes

HTML articles powered by AMS MathViewer

- by Michael Beck, Eric Pine, Wayne Tarrant and Kim Yarbrough Jensen;
- Math. Comp.
**76**(2007), 1683-1690 - DOI: https://doi.org/10.1090/S0025-5718-07-01947-3
- Published electronically: March 14, 2007
- PDF | Request permission

## Abstract:

We describe a new algorithm for finding integer solutions to $x^3 + y^3 + z^3 = k$ for specific values of $k$. We use this to find representations for values of $k$ for which no solution was previously known, including $k=30$ and $k=52$.## References

- Eric Bach and Jeffrey Shallit,
*Algorithmic number theory. Vol. 1*, Foundations of Computing Series, MIT Press, Cambridge, MA, 1996. Efficient algorithms. MR**1406794** - Andrew Bremner,
*On sums of three cubes*, Number theory (Halifax, NS, 1994) CMS Conf. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 1995, pp. 87–91. MR**1353923**, DOI 10.1006/jnth.1995.1021 - J. W. S. Cassels,
*A note on the Diophantine equation $x^3+y^3+z^3=3$*, Math. Comp.**44**(1985), no. 169, 265–266. MR**771049**, DOI 10.1090/S0025-5718-1985-0771049-4 - W. Conn and L. N. Vaserstein,
*On sums of three integral cubes*, The Rademacher legacy to mathematics (University Park, PA, 1992) Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 285–294. MR**1284068**, DOI 10.1090/conm/166/01628 - Noam Elkies, $<$elkies@abel.math.harvard.edu$>$ “x^3 + y^3 + z^3 = d," 9 July 1996, $<$nmbrthry@listserv.nodak.edu$>$ via $<$http://listserv.nodak.edu/archives/nmbrthry.html$>$.
- V. L. Gardiner, R. B. Lazarus, and P. R. Stein,
*Solutions of the diophantine equation $x^{3}+y^{3}=z^{3}-d$*, Math. Comp.**18**(1964), 408–413. MR**175843**, DOI 10.1090/S0025-5718-1964-0175843-9 - D. R. Heath-Brown,
*Searching for solutions of $x^3+y^3+z^3=k$*, Séminaire de Théorie des Nombres, Paris, 1989–90, Progr. Math., vol. 102, Birkhäuser Boston, Boston, MA, 1992, pp. 71–76. MR**1476729**, DOI 10.1007/978-1-4757-4269-5_{6} - D. R. Heath-Brown, W. M. Lioen, and H. J. J. te Riele,
*On solving the Diophantine equation $x^3+y^3+z^3=k$ on a vector computer*, Math. Comp.**61**(1993), no. 203, 235–244. MR**1202610**, DOI 10.1090/S0025-5718-1993-1202610-5 - Kenji Koyama,
*Tables of solutions of the Diophantine equation $x^3 + y^3 + z^3 = n$,*Mathematics of Computation**62**(1994), 941–942. - Kenji Koyama, Yukio Tsuruoka, and Hiroshi Sekigawa,
*On searching for solutions of the Diophantine equation $x^3+y^3+z^3=n$*, Math. Comp.**66**(1997), no. 218, 841–851. MR**1401942**, DOI 10.1090/S0025-5718-97-00830-2 - D. H. Lehmer,
*On the Diophantine equation $x^3+y^3+z^3=1$*, J. London Math. Soc.**31**(1956), 275–280. MR**78397**, DOI 10.1112/jlms/s1-31.3.275 - Richard F. Lukes,
*A Very Fast Electronic Number Sieve,*University of Manitoba doctoral thesis, 1995. - Kurt Mahler,
*Note On Hypothesis K of Hardy and Littlewood,*Journal of the London Mathematical Society**11**(1936), 136–138. - J. C. P. Miller and M. F. C. Woollett,
*Solutions of the Diophantine equation $x^3+y^3+z^3=k$*, J. London Math. Soc.**30**(1955), 101–110. MR**67916**, DOI 10.1112/jlms/s1-30.1.101 - L. J. Mordell,
*On sums of three cubes*, J. London Math. Soc.**17**(1942), 139–144. MR**7761**, DOI 10.1112/jlms/s1-17.3.139 - L. J. Mordell,
*On an infinity of integer solutions of $ax^3+ay^3+bz^3=bc^3$*, J. London Math. Soc.**30**(1955), 111–113. MR**67917**, DOI 10.1112/jlms/s1-30.1.111 - S. Ryley, The Ladies’ Diary
**122**(1825), 35. - Manny Scarowsky and Abraham Boyarsky,
*A note on the Diophantine equation $x^{n}+y^{n}+z^{n}=3$*, Math. Comp.**42**(1984), no. 165, 235–237. MR**726000**, DOI 10.1090/S0025-5718-1984-0726000-9 - Gérald Tenenbaum,
*Introduction à la théorie analytique et probabiliste des nombres*, 2nd ed., Cours Spécialisés [Specialized Courses], vol. 1, Société Mathématique de France, Paris, 1995 (French). MR**1366197** - R. C. Vaughan,
*A new iterative method in Waring’s problem*, Acta Math.**162**(1989), no. 1-2, 1–71. MR**981199**, DOI 10.1007/BF02392834

## Bibliographic Information

**Michael Beck**- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- Email: mbeck@math.uga.edu
**Eric Pine**- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- Email: epine@math.uga.edu
**Wayne Tarrant**- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
**Kim Yarbrough Jensen**- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- Received by editor(s): February 7, 2002
- Received by editor(s) in revised form: October 8, 2005
- Published electronically: March 14, 2007
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**76**(2007), 1683-1690 - MSC (2000): Primary 11D25; Secondary 11Y50, 11N36
- DOI: https://doi.org/10.1090/S0025-5718-07-01947-3
- MathSciNet review: 2299795