On the probability distribution of condition numbers of complete intersection varieties and the average radius of convergence of Newton’s method in the underdetermined case
HTML articles powered by AMS MathViewer
- by C. Beltrán and L. M. Pardo;
- Math. Comp. 76 (2007), 1393-1424
- DOI: https://doi.org/10.1090/S0025-5718-07-01963-1
- Published electronically: February 5, 2007
- PDF | Request permission
Abstract:
In these pages we show upper bound estimates on the probability distribution of the condition numbers of smooth complete intersection algebraic varieties. As a by-product, we also obtain lower bounds for the average value of the radius of Newton’s basin of attraction in the case of positive dimension affine complex algebraic varieties.References
- Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale, Complexity and real computation, Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp. MR 1479636, DOI 10.1007/978-1-4612-0701-6
- C. Beltrán, Sobre el Problema 17 de Smale: Teoría de la Intersección y Geometría Integral, Ph.D. Thesis., Universidad de Cantabria, 2006.
- Carlos Beltrán and Luis Miguel Pardo, Upper bounds on the distribution of the condition number of singular matrices, C. R. Math. Acad. Sci. Paris 340 (2005), no. 12, 915–919 (English, with English and French summaries). MR 2152279, DOI 10.1016/j.crma.2005.05.012
- C. Beltrán and L.M. Pardo, Estimates on the distribution of the condition number of singular matrices., Found. Comput. Math. To appear (2006).
- —, On Smale‘s 17th problem: A probabilistic positive answer, Found. Comput. Math. To appear (2006).
- Jean-Pierre Dedieu, Estimations for the separation number of a polynomial system, J. Symbolic Comput. 24 (1997), no. 6, 683–693. MR 1487794, DOI 10.1006/jsco.1997.0161
- Jean-Pierre Dedieu, Newton’s method and some complexity aspects of the zero-finding problem, Foundations of computational mathematics (Oxford, 1999) London Math. Soc. Lecture Note Ser., vol. 284, Cambridge Univ. Press, Cambridge, 2001, pp. 45–67. MR 1836614
- —, Points fixes, zéros et la méthode de Newton, Collection Mathématiques et Applications, Springer, to appear 2006.
- Jérôme Dégot, A condition number theorem for underdetermined polynomial systems, Math. Comp. 70 (2001), no. 233, 329–335. MR 1458220, DOI 10.1090/S0025-5718-00-00934-0
- James W. Demmel, The probability that a numerical analysis problem is difficult, Math. Comp. 50 (1988), no. 182, 449–480. MR 929546, DOI 10.1090/S0025-5718-1988-0929546-7
- Jean-Pierre Dedieu and Mike Shub, On simple double zeros and badly conditioned zeros of analytic functions of $n$ variables, Math. Comp. 70 (2001), no. 233, 319–327. MR 1680867, DOI 10.1090/S0025-5718-00-01194-7
- Neven Elezović, Carla Giordano, and Josip Pec̆arić, The best bounds in Gautschi’s inequality, Math. Inequal. Appl. 3 (2000), no. 2, 239–252. MR 1749300, DOI 10.7153/mia-03-26
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 257325
- M. Giusti, G. Lecerf, B. Salvy, and J.P. Yakoubsohn, On location and approximation of clusters of zeros: case of embedding dimension one, Found. Comp. Mathematics, to appear (2005).
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
- Joos Heintz, Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci. 24 (1983), no. 3, 239–277. MR 716823, DOI 10.1016/0304-3975(83)90002-6
- Nicholas J. Higham, Accuracy and stability of numerical algorithms, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. MR 1927606, DOI 10.1137/1.9780898718027
- W. Kahan, Huge generalized inverses of rank-deficient matrices., Unpublished Manuscript, 2000.
- Myong-Hi Kim, Topological complexity of a root finding algorithm, J. Complexity 5 (1989), no. 3, 331–344. MR 1018023, DOI 10.1016/0885-064X(89)90029-0
- Ernst Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the German by Michael Ackerman; With a preface by David Mumford. MR 789602
- Gregorio Malajovich, On generalized Newton algorithms: quadratic convergence, path-following and error analysis, Theoret. Comput. Sci. 133 (1994), no. 1, 65–84. Selected papers of the Workshop on Continuous Algorithms and Complexity (Barcelona, 1993). MR 1294426, DOI 10.1016/0304-3975(94)00065-4
- David Mumford, Algebraic geometry. I, Grundlehren der Mathematischen Wissenschaften, No. 221, Springer-Verlag, Berlin-New York, 1976. Complex projective varieties. MR 453732
- John von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. 53 (1947), 1021–1099. MR 24235, DOI 10.1090/S0002-9904-1947-08909-6
- G. W. Stewart and Ji Guang Sun, Matrix perturbation theory, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1990. MR 1061154
- Michael Shub and Steve Smale, Complexity of Bézout’s theorem. I. Geometric aspects, J. Amer. Math. Soc. 6 (1993), no. 2, 459–501. MR 1175980, DOI 10.1090/S0894-0347-1993-1175980-4
- M. Shub and S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 267–285. MR 1230872, DOI 10.1007/978-1-4612-2752-6_{1}9
- Michael Shub and Steve Smale, Complexity of Bezout’s theorem. III. Condition number and packing, J. Complexity 9 (1993), no. 1, 4–14. Festschrift for Joseph F. Traub, Part I. MR 1213484, DOI 10.1006/jcom.1993.1002
- M. Shub and S. Smale, Complexity of Bezout’s theorem. V. Polynomial time, Theoret. Comput. Sci. 133 (1994), no. 1, 141–164. Selected papers of the Workshop on Continuous Algorithms and Complexity (Barcelona, 1993). MR 1294430, DOI 10.1016/0304-3975(94)90122-8
- Michael Shub and Steve Smale, Complexity of Bezout’s theorem. IV. Probability of success; extensions, SIAM J. Numer. Anal. 33 (1996), no. 1, 128–148. MR 1377247, DOI 10.1137/0733008
- Lloyd N. Trefethen and David Bau III, Numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1444820, DOI 10.1137/1.9780898719574
- A. M. Turing, Rounding-off errors in matrix processes, Quart. J. Mech. Appl. Math. 1 (1948), 287–308. MR 28100, DOI 10.1093/qjmam/1.1.287
- J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 184422
Bibliographic Information
- C. Beltrán
- Affiliation: Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, E–39071 Santander, Spain
- MR Author ID: 764504
- ORCID: 0000-0002-0689-8232
- Email: beltranc@unican.es
- L. M. Pardo
- Affiliation: Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, E–39071 Santander, Spain
- Email: luis.pardo@unican.es
- Received by editor(s): February 6, 2006
- Published electronically: February 5, 2007
- Additional Notes: This research was partially supported by MTM2004-01167 and FPU program, Government of Spain
- © Copyright 2007 American Mathematical Society
- Journal: Math. Comp. 76 (2007), 1393-1424
- MSC (2000): Primary 65G50, 65H10
- DOI: https://doi.org/10.1090/S0025-5718-07-01963-1
- MathSciNet review: 2299780