## Computing the integer partition function

HTML articles powered by AMS MathViewer

- by Neil Calkin, Jimena Davis, Kevin James, Elizabeth Perez and Charles Swannack PDF
- Math. Comp.
**76**(2007), 1619-1638 Request permission

## Abstract:

In this paper we discuss efficient algorithms for computing the values of the partition function and implement these algorithms in order to conduct a numerical study of some conjectures related to the partition function. We present the distribution of $p(N)$ for $N \le 10^9$ for primes up to $103$ and small powers of $2$ and $3$.## References

- Scott Ahlgren,
*Distribution of parity of the partition function in arithmetic progressions*, Indag. Math. (N.S.)**10**(1999), no. 2, 173–181. MR**1816213**, DOI 10.1016/S0019-3577(99)80014-7 - Scott Ahlgren,
*Distribution of the partition function modulo composite integers $M$*, Math. Ann.**318**(2000), no. 4, 795–803. MR**1802511**, DOI 10.1007/s002080000142 - Scott Ahlgren and Matthew Boylan,
*Arithmetic properties of the partition function*, Invent. Math.**153**(2003), no. 3, 487–502. MR**2000466**, DOI 10.1007/s00222-003-0295-6 - Scott Ahlgren and Matthew Boylan,
*Coefficients of half-integral weight modular forms modulo $l^j$*, Math. Ann.**331**(2005), no. 1, 219–239. MR**2107445**, DOI 10.1007/s00208-004-0555-9 - Scott Ahlgren and Matthew Boylan,
*Coefficients of half-integral weight modular forms modulo $l^j$*, Math. Ann.**331**(2005), no. 1, 219–239. MR**2107445**, DOI 10.1007/s00208-004-0555-9 - Scott Ahlgren and Ken Ono,
*Congruences and conjectures for the partition function*, $q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000) Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 1–10. MR**1874518**, DOI 10.1090/conm/291/04889 - Scott Ahlgren and Ken Ono,
*Congruence properties for the partition function*, Proc. Natl. Acad. Sci. USA**98**(2001), no. 23, 12882–12884. MR**1862931**, DOI 10.1073/pnas.191488598 - George E. Andrews,
*The theory of partitions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR**1634067** - A. O. L. Atkin,
*Multiplicative congruence properties and density problems for $p(n)$*, Proc. London Math. Soc. (3)**18**(1968), 563–576. MR**227105**, DOI 10.1112/plms/s3-18.3.563 - A. O. L. Atkin and J. N. O’Brien,
*Some properties of $p(n)$ and $c(n)$ modulo powers of $13$*, Trans. Amer. Math. Soc.**126**(1967), 442–459. MR**214540**, DOI 10.1090/S0002-9947-1967-0214540-7 - A. O. L. Atkin and H. P. F. Swinnerton-Dyer,
*Modular forms on noncongruence subgroups*, Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1971, pp. 1–25. MR**0337781** - Jan H. Bruinier and Ken Ono,
*Coefficients of half-integral weight modular forms*, J. Number Theory**99**(2003), no. 1, 164–179. MR**1957250**, DOI 10.1016/S0022-314X(02)00061-6 - Jan H. Bruinier and Ken Ono,
*Corrigendum to: “Coefficients of half-integral weight modular forms” [J. Number Theory 99 (2003), no. 1, 164–179; MR1957250]*, J. Number Theory**104**(2004), no. 2, 378–379. MR**2029514**, DOI 10.1016/j.jnt.2003.08.007 - D. R. Heath-Brown,
*Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression*, Proc. London Math. Soc. (3)**64**(1992), no. 2, 265–338. MR**1143227**, DOI 10.1112/plms/s3-64.2.265 - O. Kolberg,
*Note on the parity of the partition function*, Math. Scand.**7**(1959), 377–378. MR**117213**, DOI 10.7146/math.scand.a-10584 - Torleiv Kløve,
*Recurrence formulae for the coefficients of modular forms and congruences for the partition function and for the coefficients of $j(\tau ),$, $(j(\tau )-1728)^{1/2}$ and $(j(\tau ))^{1/3}$*, Math. Scand.**23**(1969), 133–159 (1969). MR**252324**, DOI 10.7146/math.scand.a-10904 - Morris Newman,
*Periodicity modulo $m$ and divisibility properties of the partition function*, Trans. Amer. Math. Soc.**97**(1960), 225–236. MR**115981**, DOI 10.1090/S0002-9947-1960-0115981-2 - J.-L. Nicolas, I. Z. Ruzsa, and A. Sárközy,
*On the parity of additive representation functions*, J. Number Theory**73**(1998), no. 2, 292–317. With an appendix in French by J.-P. Serre. MR**1657968**, DOI 10.1006/jnth.1998.2288 - Ken Ono,
*Distribution of the partition function modulo $m$*, Ann. of Math. (2)**151**(2000), no. 1, 293–307. MR**1745012**, DOI 10.2307/121118 - Ken Ono,
*The partition function in arithmetic progressions*, Math. Ann.**312**(1998), no. 2, 251–260. MR**1671788**, DOI 10.1007/s002080050221 - Thomas R. Parkin and Daniel Shanks,
*On the distribution of parity in the partition function*, Math. Comp.**21**(1967), 466–480. MR**227126**, DOI 10.1090/S0025-5718-1967-0227126-9 - Hans Rademacher,
*Topics in analytic number theory*, Die Grundlehren der mathematischen Wissenschaften, Band 169, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman. MR**0364103** - S. Ramunajan,
*Congruence properties of partitions*, Proceedings of the London Mathematical Society,**19**(1919) 207–210. - Rhiannon L. Weaver,
*New congruences for the partition function*, Ramanujan J.**5**(2001), no. 1, 53–63. MR**1829808**, DOI 10.1023/A:1011493128408 - N. Calkin, J. Davis, K. James, E. Perez, and C. Swannack, cited 2006: Statistics of the Integer Partition Function. Available online at http://allegro.mit.edu/~swannack/ Projects/partitionStats/index.html

## Additional Information

**Neil Calkin**- Affiliation: Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-0975
- Email: calkin@clemson.edu
**Jimena Davis**- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
- Email: jldavis9@unity.ncsu.edu
**Kevin James**- Affiliation: Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-0975
- MR Author ID: 629241
- Email: kevja@clemson.edu
**Elizabeth Perez**- Affiliation: Applied Mathematics and Statistics, The Johns Hopkins University, G.W.C. Whiting School of Engineering, 302 Whitehead Hall, 3400 North Charles Street, Baltimore, Maryland 21218-2682
- Email: eaperez@ams.jhu.edu
**Charles Swannack**- Affiliation: Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634
- Address at time of publication: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: swannack@mit.edu
- Received by editor(s): March 11, 2005
- Received by editor(s) in revised form: July 10, 2006
- Published electronically: February 28, 2007
- Additional Notes: The authors were partially supported by NSF grant DMS-0139569

The third author was partially supported by NSF grant DMS-0090117 - © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**76**(2007), 1619-1638 - MSC (2000): Primary 05A17; Secondary 11P81, 11P83
- DOI: https://doi.org/10.1090/S0025-5718-07-01966-7
- MathSciNet review: 2299791