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APPROXIMATION METHODS FOR THE MUSKHELISHVILI
EQUATION ON SMOOTH CURVES

V. DIDENKO AND E. VENTURINO

Abstract. We investigate the possibility of applying approximation methods
to the famous Muskhelishvili equation on a simple closed smooth curve Γ.
Since the corresponding integral operator is not invertible the initial equation
has to be corrected in a special way. It is shown that the spline Galerkin,
spline collocation and spline qualocation methods for the corrected equation
are stable, and the corresponding approximate solutions converge to an ex-
act solution of the Muskhelishvili equation in appropriate norms. Numerical
experiments confirm the effectiveness of the proposed methods.

1. Introduction

Let Γ be a simple closed Lyapunov curve in the complex plane C and let γ be
a 1−periodic parametrization of Γ, which maps the interval [0, 1) 1-1 and onto Γ
and γ′ (s) �= 0 for every s ∈ [0, 1]. This curve divides the complex plane into two
domains. The interior domain will be denoted by D, and throughout this paper we
always assume that 0 ∈ D.

Let Hσ, σ ∈ R, denote the periodic Sobolev space of order σ, i.e. the completion
of the set C∞ of all 1−periodic infinitely differentiable functions on R with respect
to the norm

(1) ‖φ‖σ =

⎡
⎣∣∣∣φ̂0

∣∣∣2 +
∑

j∈Z, j �=0

∣∣∣φ̂j

∣∣∣2 |2πj|2σ

⎤
⎦

1
2

where φ̂j , j ∈ Z, stands for the Fourier coefficients of the function φ. If a function
ψ (t) is defined on the countour Γ, it can be identified with a 1−periodic function
on R by setting

(2) ψ (s) = (ψ ◦ γ) (s) = ψ (γ (s)) , s ∈ R.

Now, by Hσ (Γ) we denote the closure of C∞ (Γ) with respect to the norm ‖ψ ◦γ‖σ.
Note that in the sequel we often use notations L2 (Γ) and W 1

2 (Γ) for the spaces
H0 (Γ) and H1 (Γ) respectively. Moreover all spaces of this paper are considered
over the field of the real numbers R, so all the operators under consideration are
linear. Some of these operators are however not linear if considered as operators
on spaces over the field of complex numbers.
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Let f ∈ W 1
2 (Γ). We consider the Muskhelishvili equation on Γ, [19, §18] and

[16, pp. 42 – 43], viz.

(3) Rx (t) ≡ −x (t)− 1
2πi

∫
Γ

x (τ )d log
τ̄ − t̄

τ − t
− 1

2πi

∫
Γ

x (τ ) d
τ̄ − t̄

τ − t
= f0 (t) , t ∈ Γ,

where the bar denotes complex conjugation and

(4) f0 (t) = −1
2
f (t) +

1
2πi

∫
Γ

f (τ )
τ − t

dτ.

The operator R, and then also R1 defined below after (7), maps L2 (Γ) into itself;
see [12], [13]. Note that if f ∈ Lp, 1 < p < ∞, then f0 ∈ Lp as well [14, p. 18 –
24]. It is well known, [16, pp. 42 – 43], [17], [19, Chapter 4], that equation (3) is
closely connected to different problems of elasticity theory and the theory of slow
viscous flows. In fact, a number of boundary value problems for the biharmonic
operator in the domain D can be reduced to equation (3). This makes equation
(3) a very valuable object for application of different numerical procedures because
it allows us to essentially reduce computational costs while considering the corre-
sponding problems for partial differential equations. Nevertheless, up to now the
Muskhelishvili equation received only scant attention in numerical analysis. The
reason for this might lie in the fact that the operator R is invertible neither on the
space W 1

2 (Γ) nor on Lp (Γ); see e.g. [11], [12], [19]. In particular, equation (3) is
solvable if and only if

(5) Re
∫

Γ

f (t)dt = 0.

Therefore, no popular projection method such as Galerkin, collocation, qualocation
and so on can be applied to equation (3) directly.

Let us mention here that the Muskhelishvili equation was conceived as a tool for
studying the following boundary value problem, see [19, Chapter 4],

(6) ψ (t) + φ (t) + t̄φ′ (t) = f (t), t ∈ Γ,

for two analytic functions φ and ψ in D. Therefore most of the known numerical
methods for (3) are concerned with the approximate solution of the boundary value
problem (6), [1], [2], [17]. In the case where Γ is the unit circle, N.I. Muskhelishvili
proposed to use Fourier series expansion for solving the problem (3). However, if
Γ differs from the unit circle, such a method cannot be applied, thus conformal
mappings should first be used, [1], [2]. Simultaneously, it was observed that this
approach gives good results for the contours that, in a sense, are close to the unit
circle. However, even for ellipses with a small eccentricity such a method can
encounter certain difficulties. Moreover, it is worth mentioning that the operator
corresponding to the left hand side of (6) is not invertible either. Hence projection
methods for (6) are not going to be stable. That is why the authors of the papers
mentioned tried to modify the initial spaces to obtain invertibility of corresponding
operators. Usually such procedures require a lot of effort, and it is not always
completely clear how to properly construct appropriate spaces.

In the present paper we use different ideas. Instead of modifying the initial spaces
we prefer to correct the operator R of (3), in a way such that the new operator R1 is
already invertible on L2 (Γ) and, what is equally important, a new equation can be
used for finding approximate solutions of (3). Such an approach was probably first
mentioned by P.I. Perlin and Yu.N. Shalyukhin in [20], [21]. However, in [20] only
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a table with 7 exact and approximate values for the solution of the Muskhelishvili
equation on the unit circle is provided, without any description of the numerical
method used. In [21] the method was described in more detail for a special contour
but again no proof of its stability was given.

The theoretical tool for our analysis which opens a way for finding the approx-
imate solution of the Muskhelishvili equation is provided by the following result
[8].

Proposition 1. Let Γ be a simple closed Lyapunov curve and let the operator
T : L2 (Γ) −→ L2 (Γ) be defined by

(7) Tx (t) ≡ 1
2πi

∫
Γ

x (τ ) dτ

τ
+

1
t

1
2πi

∫
Γ

(
x (τ )
τ2

dτ +
x (τ )
τ̄2

dτ̄

)
.

Then the operator R1 = R + T is invertible on L2 (Γ). If, in addition, f ∈ W 1
2 (Γ)

and satisfies condition (5), then the solution of the equation

(8) R1x = f0

belongs to the space W 1
2 (Γ) and is simultaneously a solution of the Muskhelishvili

equation (3).

In [8] a spline Galerkin and a quadrature method was studied in the case where
Γ was assumed to be a piecewise smooth curve. The stability of the approxima-
tion methods was shown to depend on the invertibility of some quite complicated
operators from a Toeplitz algebra.

In the present paper the curve Γ is assumed to be smooth. This leads to a
very nice result. Namely, all approximation methods under consideration converge
without any additional conditions. It is also worth mentioning that in [8] the
authors used only piecewise constant splines. However, it would be desirable to use
splines of higher degree since such splines could be more effective in the calculation
of the corresponding integrals. In contrast to [8] then, we consider here these higher
order splines and we also study the collocation and qualocation methods. Note
that for splines of higher degree the applicability of the corresponding Galerkin
method for piece-wise contours was first established in [9]. The authors of [9] also
mentioned that for smooth boundaries their result can be simplified. However,
in the present paper we give a stability proof which is well adjusted to the case of
smooth boundaries and does not follow from that in [8]. Finally, note that condition
(5) is assumed to hold throughout this paper.

For the analysis of other boundary element methods for biharmonic Dirichlet
problem in smooth domains we refer the reader to [4, 5]. Let us only note that for
some boundaries, called critical, the integral operators considered in [4, 5] are not
invertible. Therefore, the methods like Galerkin and collocation are not directly
applicable. Although such situations are relatively rare, it is not a priori clear
whether those integral operators are invertible or not. Their invertibility depends
on the logarithmic capacity of the curve, and for curves of any shape, including
circles, there are cases where the corresponding integral operators on such curves
are not invertible [6]. On the other hand, the approach presented here is free from
such kinds of problems, i.e. these methods converge for any smooth contour.

Note that although this paper deals only with spline approximation methods,
the use of the corrected operator R1 opens the way for the application of projection
methods based on other approximating aggregates. In this way for instance the
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main trigonometric methods, see [15], [22], could also be applied to equation (8).
In some cases these can improve the order of convergence, but the final results will
depend heavily on the smoothness of the contour Γ.

2. Approximate solutions

Let us recall some definitions and standard notations. For any operator B defined
on a Banach space X, the range of B on X is denoted by imXB or simply by im B.
Now consider a sequence of subspaces X1 ⊂ X2 ⊂ ... ⊂ Xn ⊂ ... in the Banach
space X and a sequence of projections Qn, n ∈ N, with the property im Qn = Xn

for each n = 1, 2, .... If A is a linear operator on X and if {An} is a sequence
of linear operators on the spaces Xn such that AnQn converges to A strongly as
n −→ ∞, then for the approximate solution of the equation

(9) Ax = y, x, y ∈ X,

one can use the sequence of equations

(10) Anxn = Qny, xn ∈ Xn, n ∈ N.

Definition 2. A sequence {An} is said to be stable if there exists n0 ∈ N such that
for all n ≥ n0 the operators An : Xn −→ Xn are invertible and supn≥n0

‖A−1
n Qn‖ <

∞.
In the sequel we need the following result, which will be used by setting X ≡

L2 (Γ) when considering the Galerkin method, while we take X ≡ C (Γ) for the
collocation and qualocation methods.

Theorem 3 ([22, pp. 26-27]). Let {An} be stable and let xn, n ≥ n0, be the
solution of equation (10). Then

(11) ‖x − xn‖ ≤ inf
v∈Xn

[
‖x − v‖ + ‖A−1

n ‖ (‖Anv − Ax‖ + ‖y − Qny‖)
]
.

Remark. Notice that for the projection method (An), An = QnAQn, this theorem
shows that the error is proportional to ‖Qn‖En(x) where Qn, n ∈ N, are the cor-
responding projection operators and En(x) denotes the best approximation to the
solution by elements from Xn. The latter allows us to characterize the convergence
in terms of the smoothness of the solution x upon showing stability, using Jackson
type approximation theorems in suitable subspaces.

In the present paper we consider the stability of approximation methods based
on splines. Thus let us describe the spline spaces and the spline projections we use.
Let (f ∗ g) denote the convolution of the functions f and g,

(f ∗ g) (s) =
∫
R

f (s − x) g (x) dx.

Consider the characteristic function χ = χ (s), s ∈ R, of the interval [0, 1), i.e.

χ (s) =
{

1 s ∈ [0, 1),
0 otherwise.

For any d ∈ N introduce the function φd by

φd (s) =
(
φ0 ∗ φd−1

)
(s)

where φ0 (s) = χ (s), s ∈ R. It is well known, see e.g. [23], p. 134-139, that the
functions φd generate spline spaces on R. To be more precise, we fix d ∈ N and set

φ̃ (s) = φd (s) , s ∈ R.
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Also, fix a number n ∈ N and for each j ∈ Z define the function φ̃jn = φ̃jn (s) by

φ̃jn (s) = φ̃ (ns − j) , s ∈ R.

Then the set of all linear combinations of φ̃jn, j ∈ Z, is a spline space on R.
Using the above construction one can introduce the corresponding spline spaces

on Γ. Thus, if γ is a 1−periodic parametrization of the curve Γ, then for any t ∈ Γ
we set

φjn (t) = φ̃jn (s) , t = γ (s) , s ∈ R.

Let Sd
n = Sd

n (Γ) denote the corresponding spline space on Γ.

2.1. The Galerkin method. An approximate solution xn = xn (t) ∈ Sd
n of equa-

tion (3) is sought in the form

(12) xn (t) =
n−1∑
j=0

cjφjn (t) , t ∈ Γ.

By (·, ·) we denote the usual inner product on Γ, i.e.

(f, g) =
∫

Γ

f (t) g (t) |dt| , f, g ∈ L2 (Γ) .

Note that the norm on L2 (Γ) generated by this scalar product is equivalent to the
one defined by (1), (2).

The unknown coefficients cj , j = 0, 1, ..., n− 1, of the approximate solution (12)
are defined by the following system of algebraic equations:

(13) (R1xn, φkn) = (f0, φkn) , k = 0, 1, ..., n − 1,

where R1 is defined in Proposition 1.

Theorem 4. Let Γ be a simple closed Lyapunov curve, and let f ∈ W 1
2 (Γ). Then

there exists n0 such that for all n ≥ n0 the systems of algebraic equations (13) are
solvable and the sequence (12) of approximate solutions of equation (8) converges
to the exact solution of (3) in the norm of L2 (Γ).

Proof. Denote by Pn the orthogonal projections onto the spline subspaces Sd
n (Γ).

Then the systems of algebraic equations (13) are equivalent to the operator equa-
tions

(14) PnR1Pnxn = Pnf0, n = 1, 2....

Therefore if we are able to prove the stability of the sequence {PnR1Pn}, our claim
will follow from Proposition 1, Theorem 3 and from the corresponding results of
approximation theory. Let M refer to the operator of complex conjugation and let
K be the operator defined by

Kx (t) = − 1
2πi

∫
Γ

x (τ )d log
τ̄ − t̄

τ − t
− 1

2πi

∫
Γ

x (τ ) d
τ̄ − t̄

τ − t

+
1

2πi

∫
Γ

x (τ ) dτ

τ
+

1
t

1
2πi

∫
Γ

(
x (τ ) dτ

τ2
+

x (τ )
τ̄2

dτ̄

)
.(15)

Then the operator PnR1Pn can be written as PnR1Pn = −PnMPn+PnKPn. Using
the easily verified equality MPn = PnM , we immediately obtain

(16) PnR1Pn (−PnMPn) = Pn − PnKMPn.
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By Theorem 1 the operator R1 is invertible on the space L2 (Γ). We can thus
introduce operators Bn : im Pn −→ im Pn by

Bn = −PnMPn + PnR−1
1 KMPn.

Then by (16)

(PnR1Pn)Bn = (PnR1Pn) (−PnMPn) + (PnR1Pn)
(
PnR−1

1 KMPn

)
= Pn − PnKMPn + PnR1PnR−1

1 KMPn

= Pn − PnR1 (I − Pn)
(
R−1

1 KM
)
Pn.(17)

But by Lemma 5.21 of [22] the projections Pn converge strongly to the identity
operator. Since Γ is a Lyapunov curve the operator K is compact on L2 (Γ), [12],
[18]. Therefore, the sequence

{
PnR1 (I − Pn)R−1

1 KMPn

}
converges uniformly to

0 as n −→ ∞. Hence, the operators in the right hand side of (17) are invertible on
im Pn for all n sufficiently large and the norms of their inverses are bounded, for
example by 2.

This implies the invertibility from the right of the operators (PnR1Pn) and the
inequality

‖ (PnR1Pn)−1 Pn‖ ≤ 2‖Bn‖ ≤ 2 + 2‖R−1
1 K‖

for the norms of the right inverses. The left invertibility of PnR1Pn can be proved
analogously. Thus, the sequence {PnR1Pn} is stable, and the first assertion of
Theorem 4 follows from Theorems 1 and 3.

Taking into account the stability of the method, Proposition 1, and inequality
(11) one can get error estimates. More precisely, if the right hand side f in (7)
belongs to W 1

2 (Γ), then f0 ∈ W 1
2 (Γ), [14] and the solution x of (8) belongs to

W 1
2 (Γ) as well, [12]. Therefore, by [22, p. 44]

‖x − Pnx‖L2(Γ) ≤
c1

n
‖x‖W 1

2 (Γ)

and
‖f0 − Pnf0‖L2(Γ) ≤

c2

n
‖f0‖W 1

2 (Γ),

where c1, c2 are constants independent of x, f0 and n. Hence, using (11) one obtains

‖x − xn‖L2(Γ) ≤ ‖x − Pnx‖L2(Γ) + ‖A−1
n Pn‖

(
‖PnAPnx − APnx‖L2(Γ)

+‖APnx − Ax‖L2(Γ) + ‖f0 − Pnf0‖L2(Γ)

)
≤ c3

n
,

where the constant c3 is independent of n. This completes the proof.

2.2. The collocation method. Let 0 ≤ ε < 1 be a real number and let t
(n)
j ∈ Γ

be defined as follows:

t
(n)
j = γ

(
j + ε

n

)
, j = 0, 1, ..., n − 1.

The approximate solution of equation (3) is again sought in the form (12), but the
unknown coefficients cj , j = 0, 1, ..., n − 1, will be obtained from the system

(18) R1xn

(
t
(n)
j

)
= f0

(
t
(n)
j

)
, j = 0, 1, ..., n − 1.

The collocation method is considered in the context of the space C (Γ), so X in
Theorem 3 is identified now with this space. It follows from [22, p. 64], that if d is
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odd and ε �= 1
2 or if d is even and ε �= 0, then there exists a uniquely determined

interpolation projection Ln onto the space Sd
n (Γ) such that

(19) Lnf
(
t
(n)
j

)
= f

(
t
(n)
j

)
.

Using this notation and recalling the remark after (14), we see that the system (18)
is equivalent to the operator equation

(20) LnR1Pnxn = Lnf0, n ∈ N.

However, the projections Ln are not defined on the space L2 (Γ). Hence, to be able
to study the collocation method we have to consider the operator R1 on a more
appropriate space.

Theorem 5. Let Γ be a simple closed curve and let its parametrization γ be twice
continuously differentiable on [0, 1]. Assume that f ∈ W 1

2 (Γ). Then there exists an
integer n0 such that equations (20) are solvable for all n ≥ n0, and the sequence
{xn}n≥n0

converges to a solution of equation (3) in the norm of C (Γ).

Proof. We now consider the operator R1 on the space C (Γ). First of all we mention
that if γ is twice continuously differentiable, then the operator K of (15) is compact
on C (Γ). Really, this claim is obvious for the operator T because the kernels of the
corresponding integral operators are continuous. Therefore consider for instance
the operator T1,

T1x (t) =
1

2πi

∫
Γ

x (τ ) d
τ̄ − t̄

τ − t
=

∫
Γ

K1 (t, τ )x (τ ) dτ.

The kernel K1 (t, τ ) of this integral operator has the form

K1 (t, τ ) =
1

2πi

[
(τ − t) dτ̄

dτ − (τ̄ − t̄)

(τ − t)2

]
.

Since Γ does not have any intersections with itself, the function K1 is obviously
continuous for τ �= t. Let us study the behavior of the expression

Φ1 (t, τ ) =
(τ − t) dτ̄ − (τ̄ − t̄) dτ

(τ − t)2

when τ tends to t. Setting τ = γ (σ), t = γ (s), σ, s ∈ [0, 1), σ �= s and using the
twice continuous differentiability of the function γ, we get as σ −→ s

Φ1 (t, τ ) =
iIm

(
γ′′ (σ)γ′ (σ)

)
+ o (1)

[γ′ (σ)]2
.

Hence

lim
τ−→t

Φ1 (t, τ ) = i
Im

(
γ′′ (s)γ′ (s)

)
[γ′ (s)]2

,

thus the function Φ1 (t, τ ) is continuous for all t, τ on Γ, and the operator T1 :
C (Γ) −→ C (Γ) is compact. The compactness of the remaining integral operator
T2,

T2x (t) = − 1
2πi

∫
Γ

x (τ )d log
τ̄ − t̄

τ − t
=

∫
Γ

K2 (t, τ )x (τ )dτ,
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can be shown in the same way, thus obtaining

lim
τ−→t

Φ2 (t, τ ) = i
Im

(
γ′′ (s)γ′ (s)

)
|γ′ (s)|2

.

We can now show the invertibility of the operator R1 on C (Γ). Since K is
compact, the standard Fredholm theory implies that the index of the operator R1

considered on C (Γ) is equal to zero. The space C (Γ) is dense in L2 (Γ) and the
index of R1 on L2 (Γ) is equal to zero [8]. Therefore, by [13] the dimensions of the
kernels of R1 on L2 (Γ) and on C (Γ) coincide. However the operator R1 : L2(Γ) −→
L2(Γ) is invertible, hence dim ker R1|L2(Γ) = 0. This implies dim kerR1|C(Γ) = 0.
Taking into account that the index of the operator R1 : C (Γ) −→ C (Γ) is also
zero, one obtains the invertibility of the operator R1 on the Banach space C (Γ).

The next steps mainly follow the Proof of Theorem 4. Representing the operator
LnR1Pn in the following form:

LnR1Pn = −LnMPn + LnKPn

and multiplying the latter expression by the operator

B̃n = −LnMPn + LnR−1
n KMPn

one obtains
(LnR1Pn) B̃n = Pn − LnR1 (I − Ln) R−1

1 KMPn.

Since by Lemma 5.28 of [22] the sequence {I − Ln}n∈N is uniformly bounded,
the approximation properties of the splines guarantee that the sequence converges
strongly to zero on C(Γ). Also observing that the operator R−1KM is compact, we
get that for all n large enough the operators LnR1Pn : im Pn −→ im Pn are right
invertible and their right inverses are uniformly bounded. Since these operators are
finite dimensional their invertibility on im Pn follows. Having proved the stability
of the sequence {LnR1Pn} we again can use Theorem 3 to establish the convergence
of the approximate solutions.

2.3. The qualocation method. This method represents a discrete version of the
Galerkin method. The qualocation method was routinely used while applying ap-
proximate procedures to operator equations, but its systematic study was started
by I.H. Sloan in 1988, [24]. At present there is a large number of papers devoted
to different aspects of the method. Here we consider the stability of the following
version of the qualocation method for the Muskhelishvili equation.

Let 0 < ε1 < ε2... < εm < 1 and ω1, ω2, ..., ωm, be positive numbers such that
ω1 + ω2 + ... + ωm = 1 and let t

(n)
j,εk

= γ
(

j+εk

n

)
, j ∈ Z, k = 1, 2, ..., m. By Qn we

denote the quadrature formula

Qn (g) =
n−1∑
j=0

m∑
r=1

ωrg
(
t
(n)
j,εr

)
.

The approximate solution of equation (3) is sought in the form (12) but in contrast
to (13) the coefficients cj , j = 0, 1, ..., n − 1, are determined from the following
system of algebraic equations:

(21) Qn (R1xn, v) = Qn (f0, v) , xn ∈ Sd
n (Γ) ,

for all v ∈ S0
n (Γ), where S0

n (Γ) denotes the space of piecewise constant splines
on Γ. Note that such a spline qualocation method, though with the more general
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spline space Sµ
n (Γ) in place of S0

n (Γ), was studied in [10] for the Cauchy singular
integral equations on the unit circle Γ.

Theorem 6. Let Γ be a simple closed curve such that its parametrization γ is a
twice continuously differentiable function on [0, 1]. Assume also that f ∈ W 1

2 (Γ),
and let εr ∈ (0, 1) be real numbers such that εr �= 1

2 , r = 1, 2, ..., m, if d is odd.
Then there exists an integer n0 such that for all n ≥ n0 equations (21) are solvable
and the corresponding approximate solutions xn converge to an exact solution of
equation (3) in the norm of C (Γ).

Proof. The operators An : Sd
n (Γ) −→ Sd

n (Γ) corresponding to the left hand side of
(21) can be represented in the form

(22) An =
m∑

r=1

ωrL
εr
n R1Pn

where Lεr
n denotes the interpolation projection onto the spline space Sd

n (Γ) satis-
fying the property

Lεr
n u (tj,εr

) = u (tj,εr
) , j = 0, 1, ..., n − 1.

Since R1 = −M + K and Lεr
n MPn = MPn = Lε1

n MPn for any r = 1, 2, ..., m we
can rewrite (22) as

(23) An = −Lε1
n MPn + Lε1

n KPn +
m∑

r=2

ωr (Lεr
n − Lε1

n ) KPn.

The sequence {Lεr
n − Lε1

n } converges strongly to 0 on the space C (Γ) as n −→ ∞.
Taking into account the compactness of K we deduce that

‖
m∑

r=2

ωr (Lεr
n − Lε1

n )KPn‖ −→ 0

as n −→ ∞. Now we can proceed as in the proofs of Theorems 4 and 5.

3. Discussion

We implemented both the Galerkin and collocation methods on several examples,
using splines of order m = d + 1. We performed an extensive investigation on the
performance of the proposed schemes, examining in particular the behavior of the
code as a function of the various available parameters.

Note that the major computational effort lies in solving systems of algebraic
equations and thus it is the same for each example and the same approximation
method if the matrices M have the same size. The estimates on the conditioning
of the system are obtained from the standard Matlab function cond(M, p) with
p = 2 and p = ∞. Note that the conditioning is the same for all the examples, as
it is related with their left hand sides, which all contain the same operator. The
examples differ indeed only in their right hand sides.

Table 1 contains the condition numbers of the collocation scheme in the L∞
norm, when Γ is the unit circle, for various choices of the parameter ε and order
of the splines. The number of grid points is even. The case ε = .5 that is not
entirely covered by Theorem 5, is taken here on purpose. It gives ill-conditioning if
the order m of splines is even, while the scheme appears to be better behaved the
closer to the endpoints of [0, 1] the choice of ε is. For m odd, the reverse occurs;
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Table 1. Conditioning with collocation scheme - even number of nodes

‖M‖∞‖M−1‖∞
ε = .01 n m = 2 m = 3 m = 4 m = 5

16 33.843 677.30 55.489 2002.5
32 35.949 658.84 57.022 1922.1
64 36.925 653.40 59.140 1905.5
128 37.418 650.80 60.794 1904.5

ε = .35 16 58.218 44.585 105.73 84.214
32 60.635 47.596 104.68 84.659
64 63.142 49.910 105.22 86.679
128 64.920 51.060 107.28 89.438

ε = .5 16 1.3 ×1018 43.344 9.9 ×1017 77.217
32 2.6 ×1017 45.345 4.1 ×1017 78.257
64 2.5 ×1017 46.994 1.8 ×1018 79.910
128 6.8 ×1017 48.615 3.9 ×1018 82.596

ε = .65 16 58.218 45.623 104.82 83.355
32 60.635 47.543 102.81 84.815
64 63.142 49.897 103.99 87.152
128 64.920 51.057 107.17 89.575

ε = .999 16 33.595 6711.6 55.305 20020.0
32 35.714 6510.0 57.017 19216.0
64 36.693 6423.5 59.119 19045.0
128 37.188 6379.2 60.774 19002.0

Table 2. Conditioning of Galerkin scheme

‖M‖2‖M−1‖2

n m = 2 m = 3 m = 4 m = 5 n m = 2 m = 3 m = 4 m = 5

8 7.96 3.4 ×1017 52.56 1.2 ×1015 9 7.96 247.56 59.49 529.24
16 7.96 3.3 ×1017 64.22 2.4 ×1015 17 7.96 909.25 66.76 1992.4
32 7.96 6.6 ×1017 69.03 5.0 ×1015 33 7.96 3473.6 69.72 7706.3
64 7.96 1.0 ×1018 70.67 1.1 ×1016 65 7.96 13558 70.85 30285

the best conditioning of the scheme is obtained with ε near .5, while taking a value
close to either 0 or 1 gives larger condition numbers. The conditioning also grows
very little with increasing n, in line with the stability results for the collocation
method. Similar results are obtained with an odd number of nodes.

Now consider the Galerkin method. Table 2 contains the corresponding condition
numbers in the L2 norm. As in this case no parameter ε arises, the results are
much easier to illustrate. Notice that this time the system is badly conditioned
for an even number of nodes coupled with m odd. This is probably caused by the
approximation method used for calculating the scalar product. The effect is closely
connected with the fact that while implementing the Galerkin method we are in
reality using qualocation schemes with ε1 = 0. In the Galerkin case an odd n also
exhibits a larger conditioning for m odd, compared to m even, but much milder
compared with the ill-conditioning of the same m for n even.
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Let us now illustrate the convergence of the above considered approximation
methods for the Muskhelishvili equation with given right hand sides. For sake
of simplicity, in these examples we use an explicit expression for the function f0.
Moreover, in all cases the curve Γ is the unit circle, but the last example will also be
considered on a family of ellipses with increasing eccentricity, to show the flexibility
of the proposed methods.

Example 1. The forcing function is chosen as f0(t) = −t−2, so that an analytical
solution is x(t) = t2. These functions are defined over the unit circle, t ∈ Γ. The
function x(t) = t2 is just a particular solution, while the Muskhelishvili equation
in this case has a family of solutions of the general form x(t) = t2 + iαt + β, with
α ∈ R and β ∈ C.

Figures 1-2 show the error behavior of Example 1 |x(γ(s))−xn(γ(s))|, s ∈ [0, 1],
across the interval, for some selected cases of the order of splines and the collocation
parameter ε. In general, doubling n provides a decrease in the error. The figures do
not differ too much from each other. For the Galerkin method the error behavior
is very similar and thus not reported. This once again indicates that m does not
play an essential role in the convergence, and that both methods behave similarly.
From Figures 1-2, comparing the ratios of the heights of the vertical scales or the
maxima of the functions, the latter can easily be seen to be larger than 2, indicating
superlinear convergence at the very least, in line with our theoretical results. To
better assess the performance of the method, tables are included containing the
empirical estimates of the convergence order r from

r ≡ log2(‖en‖) − log2(‖e2n‖), en ≡ x(γ(s)) − xn(γ(s)),
r̂ ≡ log2(‖δn‖) − log2(‖δ2n‖), δn ≡ xn(γ(s)) − x2n(γ(s)).

In Tables 3 and 4 in spite of using a higher value of m in some cases, convergence
does not appear to improve. In almost all cases it is barely superlinear. The
periodicity of the problem might explain the good performance for the choice m = 2.
Thus the order of the error does not seem to be influenced by the choice of the order
m of the splines. Theoretically, convergence is determined indeed only by n−1. The
error might be improved by using higher order quadratures for the calculation of
the corresponding integrals.

The right hand sides in the next examples are arbitrarily chosen. Convergence
of the numerical schemes follows comparing runs with an increasing number of grid
points, n. As the analytic solution is not available for these examples, we show the
graphs of the solutions xn(t), t ∈ Γ, for various increasing values of n. The figures
below show convergence of the algorithms, as the former become closer the higher
n is. This happens both with different choices of the order of the splines as well as
by using different methods for their calculations. When the analytic solution is not
available, these calculations also validate the code since the same solution is always
reproduced.

Example 2. In this case we chose f0(t) = i
tcos(t) − 1

t .

Example 3. Here we chose f0(t) = t3

t2+2 .
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Table 3. Convergence order of collocation scheme on Example 1

m = 2 ε = 0.1 m = 2 ε = 0.45

n ‖en‖∞ r ‖δn‖∞ r̂ ‖en‖∞ r ‖δn‖∞ r̂

4 1.03 – – – 9.89 – – –
8 2.24×10−1 2.20 1.07 – 4.08×10−1 4.60 9.85 –
16 5.10×10−2 2.13 2.39×10−1 2.17 8.15×10−2 2.32 3.27×10−1 4.91
32 1.24×10−2 2.04 5.50×10−2 2.12 1.94×10−2 2.07 6.21×10−2 2.39

64 3.08×10−3 2.01 1.34×10−2 2.03 4.79×10−3 2.02 1.46×10−2 2.09
128 7.70×10−4 2.00 3.33×10−3 2.01 1.19×10−3 2.00 3.60×10−3 2.02

m = 3 ε = 0.7 m = 4 ε = 0.45

n ‖en‖∞ r ‖δn‖∞ r̃ ‖en‖∞ r ‖δn‖∞ r̂

4 2.18 – – – 1.98×101 – – –

8 2.71×10−1 3.01 2.01 – 4.57×10−1 5.44 1.94×101 –
16 7.62×10−2 1.83 2.07×10−1 3.28 1.49×10−1 1.62 3.36×10−1 5.85
32 3.28×10−2 1.22 4.50×10−2 2.20 6.64×10−2 1.17 8.66×10−2 1.96
64 1.58×10−2 1.06 1.71×10−2 1.40 3.18×10−2 1.06 3.50×10−2 1.31

128 7.76×10−3 1.02 8.02×10−3 1.09 1.56×10−2 1.03 1.62×10−2 1.11

Table 4. Convergence order of Galerkin scheme on Example 1

m = 2 m = 3

n ‖en‖2 r ‖δn‖2 r̃ ‖en‖2 r ‖δn‖2 r̂

5 1.29 – – – 2.20e+00 – – –
9 3.28×10−1 1.98 7.45×10−1 – 2.42e-01 3.18 1.47e+00 –
17 6.93×10−2 2.24 1.85×10−1 2.01 6.83×10−2 1.82 1.13×10−1 3.70
33 1.06×10−2 2.71 4.10×10−2 2.18 2.29×10−2 1.58 2.65×10−2 2.09
65 2.54×10−3 2.06 5.51×10−3 2.89 8.02×10−3 1.52 8.35×10−3 1.67
129 4.35×10−4 2.54 1.46×10−3 1.91 2.83×10−3 1.51 2.87×10−3 1.54

m = 4 m = 5

n ‖en‖2 r ‖δn‖2 r̃ ‖en‖2 r ‖δn‖2 r̂

5 2.56 – – – 8.25e+00 – – –
9 4.83×10−1 2.40 1.64 – 8.51×10−1 3.28 5.74 –
17 1.40×10−1 1.79 2.33×10−1 2.82 2.21×10−1 1.94 4.61×10−1 3.64
33 4.66×10−2 1.59 5.61×10−2 2.05 7.15×10−2 1.63 9.38×10−2 2.30
65 1.62×10−2 1.53 1.73×10−2 1.70 2.45×10−2 1.55 2.71×10−2 1.79
129 5.67×10−3 1.51 5.82×10−3 1.57 8.56×10−3 1.52 8.90×10−3 1.61

In Tables 5 and 6 we give the empirical orders of convergence r̂ for both collo-
cation and Galerkin methods. On these two examples for collocation for m = 3 we
obtain superlinear convergence, for the two values of ε chosen, but for m = 2 and
m = 4 we find more than quadratic convergence again independently of ε. Similar
results hold for the Galerkin case.

The Figures 3-8 exhibit the behavior of the algorithms on these examples. Note
that the first frame in every figure shows that each algorithm begins with a some-
what different first approximation of the solution, which however is automatically
corrected the larger the values of n. An instance of this sort is seen in Figure 3,
where the initial “broken line” approximation is smoothed out, and in Figure 4. It
is also apparent that choosing n even or odd does not influence the later stages of
the computations.
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Table 5. Convergence order of collocation scheme

Example 2 m = 3 ε = 0.1 Example 3 m = 4 ε = 0.3
n ‖δn‖∞ r̂ n ‖δn‖∞ r̂

4 – – 4 – –
8 1.67 – 8 1.21 –
16 5.11×10−1 1.71 16 8.55×10−1 0.50
32 4.75×10−2 3.43 32 3.52×10−1 1.28
64 1.33×10−2 1.83 64 5.07×10−2 2.80
128 5.77×10−3 1.21 128 5.97×10−3 3.09

Example 2 m = 3 ε = 0.6 Example 3 m = 2 ε = 0.6
n ‖δn‖∞ r̂ n ‖δn‖∞ r̂

4 – – 4 – –
8 1.01 – 8 1.76 –
16 3.44×10−1 1.55 16 1.93 -0.14
32 4.82×10−2 2.84 32 9.58×10−1 1.01
64 1.41×10−2 1.77 64 1.83×10−1 2.39
128 5.88×10−3 1.26 128 3.30×10−2 2.47

Table 6. Convergence order of Galerkin scheme

Example 2 m = 3 Example 3 m = 4
n ‖δn‖2 r̂ n ‖δn‖2 r̂

5 – – 5 – –
9 7.06 – 9 4.90 –
17 8.50×10−1 3.05 17 1.47 1.74
33 7.04×10−2 3.59 33 2.64×10−1 2.48
65 1.96×10−2 1.84 65 2.75×10−2 3.26
129 6.40×10−3 1.61 129 6.72×10−3 2.03

Table 7. Conditioning in elliptic case for b = 2

a = 6 a = 10 a = 18 a = 25

collocation m = 2 5.1 × 102 8.3 × 102 1.5 × 103 1.9 × 103

‖M‖∞‖M−1‖∞ m = 3 5.6 × 102 9.2 × 102 1.9 × 103 3.3 × 103

n = 128 m = 4 7.1 × 102 1.3 × 103 3.3 × 103 7.2 × 103

ε = .25 m = 5 8.4 × 102 1.6 × 103 4.8 × 103 1.3 × 104

Galerkin ‖M‖2‖M−1‖2 m = 2 1.2 × 102 3.0 × 102 9.9 × 102 1.9 × 103

n = 129 m = 4 8.0 × 102 2.2 × 103 7.5 × 103 1.8 × 104

In this case, Figures 3 and 4 are evaluated for m = 2 and m = 4 and with
different ε and an even n, while Figures 5 and 6 for m = 3 and m = 4 with an odd
n. In all cases for the larger values of n the same solutions are obtained.

In Figures 7 and 8 the two methods are used with different parity of n, but with
the same m = 3, still to obtain the same solution.
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Example 4. Our final choice is f0(t) = cos(t)−it2

sin(t) .

The previous examples were only concerned with the circular domain. For such a
domain the biharmonic problem as well as the Muskhelishvili equation were solved
by approximation methods based on the Fourier series expansion [1], [2], [17]. How-
ever if the boundary differs from the circle the methods mentioned may experience
difficulties, as mentioned in [1], even for ellipses with small eccentricity. The rea-
son is that they require conformal mappings from the unit disk. The methods we
propose here are free from such problems, as evidenced by Figures 9-16. In the
latter we approximate the solution of the Muskhelishvili equation with the same
right hand side of Example 4, but formulated on the unit circle and on ellipses with
increasing eccentricity. It is apparent that the solutions differ for different values
of this parameter, but the algorithms are still stable and pick up the fine details of
each solution, provided that a sufficient number of nodes is used. In addition, one
can note a remarkable transformation of the solution caused by the changing of the
contour. As a final check, the Galerking method has also been used on Example 4,
running it with different m but with the same eccentricity, to compare the results of
the collocation method. The reader should compare Figures 11 and 12, 13 and 14,
15 and 16 respectively. We also remark that the condition numbers for the larger
values of n in these cases are essentially the same, provided ε is not close to the
value 0.5, independently of the number of nodes, up to n = 512 and of the order of
the splines used. Specifically keeping b = 2, the condition number is evaluated in
the following Table 7 for both methods; however as we already remarked that an
odd m makes the Galerkin method ill-conditioned, we do not report these results.
Conditioning grows mildly with both methods for an increasing eccentricity of the
contour.
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Figure 1. Collocation error for Example 1, |x(γ(s))−xn(γ(s))|, s∈ [0, 1]
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Figure 2. Collocation error for Example 1, |x(γ(s))−xn(γ(s))|, s∈ [0, 1]
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Figure 3. Example 2 collocation solution xn(t), t ∈ Γ
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Figure 4. Example 2 collocation solution xn(t), t ∈ Γ
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Figure 5. Example 2 Galerkin solution xn(t), t ∈ Γ
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Figure 6. Example 2 Galerkin solution xn(t), t ∈ Γ
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Figure 7. Example 3 collocation solution xn(t), t ∈ Γ
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Figure 8. Example 3 Galerkin solution xn(t), t ∈ Γ
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Figure 9. Example 4 collocation solution xn(t), t ∈ Γ, the unit circle
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Figure 10. Example 4 collocation solution xn(t), t ∈ Γ, where Γ
is now the ellipse with semiaxes a = 3, b = 2
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Figure 11. Example 4 collocation solution xn(t), t ∈ Γ, where Γ
is now the ellipse with semiaxes a = 6, b = 2
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Figure 12. Example 4 Galerkin solution xn(t), t ∈ Γ, where Γ is
now the ellipse with semiaxes a = 6, b = 2
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Figure 13. Example 4 collocation solution xn(t), t ∈ Γ, where Γ
is now the ellipse with semiaxes a = 10, b = 2
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Figure 14. Example 4 Galerkin solution xn(t), t ∈ Γ, where Γ is
now the ellipse with semiaxes a = 10, b = 2
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Figure 15. Example 4 collocation solution xn(t), t ∈ Γ, where Γ
is now the ellipse with semiaxes a = 18, b = 2
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Figure 16. Example 4 Galerkin solution xn(t), t ∈ Γ, where Γ is
now the ellipse with semiaxes a = 18, b = 2
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