Cubature formulas for symmetric measures in higher dimensions with few points
HTML articles powered by AMS MathViewer
- by Aicke Hinrichs and Erich Novak;
- Math. Comp. 76 (2007), 1357-1372
- DOI: https://doi.org/10.1090/S0025-5718-07-01974-6
- Published electronically: February 16, 2007
- PDF | Request permission
Abstract:
We study cubature formulas for $d$-dimensional integrals with an arbitrary symmetric weight function of product form. We present a construction that yields a high polynomial exactness: for fixed degree $\ell =5$ or $\ell =7$ and large dimension $d$ the number of knots is only slightly larger than the lower bound of Möller and much smaller compared to the known constructions. We also show, for any odd degree $\ell = 2k+1$, that the minimal number of points is almost independent of the weight function. This is also true for the integration over the (Euclidean) sphere.References
- H. Berens, H. J. Schmid, and Y. Xu, Multivariate Gaussian cubature formulae, Arch. Math. (Basel) 64 (1995), no. 1, 26–32. MR 1305657, DOI 10.1007/BF01193547
- Hans-Joachim Bungartz and Michael Griebel, Sparse grids, Acta Numer. 13 (2004), 147–269. MR 2249147, DOI 10.1017/S0962492904000182
- Simon Capstick and B. D. Keister, Multidimensional quadrature algorithms at higher degree and/or dimension, J. Comput. Phys. 123 (1996), no. 2, 267–273. MR 1372373, DOI 10.1006/jcph.1996.0023
- Ronald Cools, Constructing cubature formulae: the science behind the art, Acta numerica, 1997, Acta Numer., vol. 6, Cambridge Univ. Press, Cambridge, 1997, pp. 1–54. MR 1489255, DOI 10.1017/S0962492900002701
- Ronald Cools, An encyclopaedia of cubature formulas, J. Complexity 19 (2003), no. 3, 445–453. Numerical integration and its complexity (Oberwolfach, 2001). MR 1984127, DOI 10.1016/S0885-064X(03)00011-6
- Ronald Cools and Ann Haegemans, An imbedded family of cubature formulae for $n$-dimensional product regions, J. Comput. Appl. Math. 51 (1994), no. 2, 251–262. MR 1290241, DOI 10.1016/0377-0427(92)00007-V
- Alan Genz, Fully symmetric interpolatory rules for multiple integrals, SIAM J. Numer. Anal. 23 (1986), no. 6, 1273–1283. MR 865956, DOI 10.1137/0723086
- Alan Genz and B. D. Keister, Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight, J. Comput. Appl. Math. 71 (1996), no. 2, 299–309. MR 1399898, DOI 10.1016/0377-0427(95)00232-4
- Thomas Gerstner and Michael Griebel, Numerical integration using sparse grids, Numer. Algorithms 18 (1998), no. 3-4, 209–232. MR 1669959, DOI 10.1023/A:1019129717644
- Greg Kuperberg, Numerical cubature using error-correcting codes, SIAM J. Numer. Anal. 44 (2006), no. 3, 897–907. MR 2231848, DOI 10.1137/040615572
- James Lu and David L. Darmofal, Higher-dimensional integration with Gaussian weight for applications in probabilistic design, SIAM J. Sci. Comput. 26 (2004), no. 2, 613–624. MR 2116364, DOI 10.1137/S1064827503426863
- J. N. Lyness, Symmetric integration rules for hypercubes. I. Error coefficients, Math. Comp. 19 (1965), 260–276. MR 201067, DOI 10.1090/S0025-5718-1965-0201067-3
- J. N. Lyness, Limits on the number of function evaluations required by certain high-dimensional integration rules of hypercubic symmetry, Math. Comp. 19 (1965), 638–643. MR 199961, DOI 10.1090/S0025-5718-1965-0199961-5
- J. McNamee and F. Stenger, Construction of fully symmetric numerical integration formulas, Numer. Math. 10 (1967), 327–344. MR 219241, DOI 10.1007/BF02162032
- H. M. Möller, Lower bounds for the number of nodes in cubature formulae, Numerische Integration (Tagung, Math. Forschungsinst., Oberwolfach, 1978) Internat. Ser. Numer. Math., vol. 45, Birkhäuser Verlag, Basel-Boston, Mass., 1979, pp. 221–230. MR 561295
- I. P. Mysovskih, On the construction of cubature formulas with the smallest number of nodes, Dokl. Akad. Nauk SSSR 178 (1968), 1252–1254 (Russian). MR 224284
- I. P. Mysovskikh, Interpolyatsionnye kubaturnye formuly, “Nauka”, Moscow, 1981 (Russian). MR 656522
- Erich Novak and Klaus Ritter, High-dimensional integration of smooth functions over cubes, Numer. Math. 75 (1996), no. 1, 79–97. MR 1417864, DOI 10.1007/s002110050231
- Erich Novak and Klaus Ritter, Simple cubature formulas with high polynomial exactness, Constr. Approx. 15 (1999), no. 4, 499–522. MR 1702807, DOI 10.1007/s003659900119
- Erich Novak, Klaus Ritter, Richard Schmitt, and Achim Steinbauer, On an interpolatory method for high-dimensional integration, J. Comput. Appl. Math. 112 (1999), no. 1-2, 215–228. Numerical evaluation of integrals. MR 1728461, DOI 10.1016/S0377-0427(99)00222-8
- Knut Petras, Smolyak cubature of given polynomial degree with few nodes for increasing dimension, Numer. Math. 93 (2003), no. 4, 729–753. MR 1961886, DOI 10.1007/s002110200401
- Hans Joachim Schmid, Interpolatorische Kubaturformeln, Dissertationes Math. (Rozprawy Mat.) 220 (1983), 122 (German). MR 735919
- Smolyak, S. A. (1963): Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4, 240-243
- A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971. MR 327006
- Nicolas Victoir, Asymmetric cubature formulae with few points in high dimension for symmetric measures, SIAM J. Numer. Anal. 42 (2004), no. 1, 209–227. MR 2051063, DOI 10.1137/S0036142902407952
Bibliographic Information
- Aicke Hinrichs
- Affiliation: Mathematisches Institut, Universität Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany
- Email: hinrichs@math.uni-jena.de
- Erich Novak
- Affiliation: Mathematisches Institut, Universität Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany
- Email: novak@math.uni-jena.de
- Received by editor(s): August 25, 2005
- Received by editor(s) in revised form: June 16, 2006
- Published electronically: February 16, 2007
- Additional Notes: Research of the first author was supported by the DFG Emmy-Noether grant Hi 584/2-4.
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 1357-1372
- MSC (2000): Primary 65D32
- DOI: https://doi.org/10.1090/S0025-5718-07-01974-6
- MathSciNet review: 2299778