On generalized averaged Gaussian formulas
Author:
Miodrag M. Spalević
Journal:
Math. Comp. 76 (2007), 1483-1492
MSC (2000):
Primary 65D30, 65D32; Secondary 33A65.
DOI:
https://doi.org/10.1090/S0025-5718-07-01975-8
Published electronically:
March 8, 2007
Erratum:
Math. Comp. 47 (1986), 767.
MathSciNet review:
2299784
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We present a simple numerical method for constructing the optimal (generalized) averaged Gaussian quadrature formulas which are the optimal stratified extensions of Gauss quadrature formulas. These extensions exist in many cases in which real positive Kronrod formulas do not exist. For the Jacobi weight functions $w(x)\equiv w^{(\alpha ,\beta )}(x)=(1-x)^\alpha (1+x)^\beta$ ($\alpha ,\beta >-1$) we give a necessary and sufficient condition on the parameters $\alpha$ and $\beta$ such that the optimal averaged Gaussian quadrature formulas are internal.
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
- D. Calvetti, G. H. Golub, W. B. Gragg, and L. Reichel, Computation of Gauss-Kronrod quadrature rules, Math. Comp. 69 (2000), no. 231, 1035–1052. MR 1677474, DOI https://doi.org/10.1090/S0025-5718-00-01174-1
- Daniela Calvetti and Lothar Reichel, Symmetric Gauss-Lobatto and modified anti-Gauss rules, BIT 43 (2003), no. 3, 541–554. MR 2026714, DOI https://doi.org/10.1023/B%3ABITN.0000007053.03860.c0
- Sven Ehrich, On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas, Proceedings of the 9th International Congress on Computational and Applied Mathematics (Leuven, 2000), 2002, pp. 291–299. MR 1934445, DOI https://doi.org/10.1016/S0377-0427%2801%2900407-1
- Walter Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3 (1982), no. 3, 289–317. MR 667829, DOI https://doi.org/10.1137/0903018
- Walter Gautschi, Orthogonal polynomials: computation and approximation, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004. Oxford Science Publications. MR 2061539
- Walter Gautschi, A historical note on Gauss-Kronrod quadrature, Numer. Math. 100 (2005), no. 3, 483–484. MR 2195449, DOI https://doi.org/10.1007/s00211-005-0592-7
- Gene H. Golub and John H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221-230; addendum, ibid. 23 (1969), no. 106, loose microfiche suppl, A1–A10. MR 0245201, DOI https://doi.org/10.1090/S0025-5718-69-99647-1
- D. K. Kahaner and G. Monegato, Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights, Z. Angew. Math. Phys. 29 (1978), no. 6, 983–986 (English, with German summary). MR 523866, DOI https://doi.org/10.1007/BF01590820
- Dirk P. Laurie, Stratified sequences of nested quadrature formulas, Quaestiones Math. 15 (1992), no. 3, 365–384. 17th South African Symposium on Numerical Mathematics (Umhlanga, 1991). MR 1192847
- Dirk P. Laurie, Anti-Gaussian quadrature formulas, Math. Comp. 65 (1996), no. 214, 739–747. MR 1333318, DOI https://doi.org/10.1090/S0025-5718-96-00713-2
- Dirk P. Laurie, Calculation of Gauss-Kronrod quadrature rules, Math. Comp. 66 (1997), no. 219, 1133–1145. MR 1422788, DOI https://doi.org/10.1090/S0025-5718-97-00861-2
- Giovanni Monegato, An overview of the computational aspects of Kronrod quadrature rules, Numer. Algorithms 26 (2001), no. 2, 173–196. MR 1829797, DOI https://doi.org/10.1023/A%3A1016640617732
- T. N. L. Patterson, Stratified nested and related quadrature rules, J. Comput. Appl. Math. 112 (1999), no. 1-2, 243–251. Numerical evaluation of integrals. MR 1728463, DOI https://doi.org/10.1016/S0377-0427%2899%2900224-1
- Franz Peherstorfer, Characterization of positive quadrature formulas, SIAM J. Math. Anal. 12 (1981), no. 6, 935–942. MR 635246, DOI https://doi.org/10.1137/0512079
- Franz Peherstorfer, Characterization of quadrature formula. II, SIAM J. Math. Anal. 15 (1984), no. 5, 1021–1030. MR 755862, DOI https://doi.org/10.1137/0515079
- Franz Peherstorfer, On positive quadrature formulas, Numerical integration, IV (Oberwolfach, 1992) Internat. Ser. Numer. Math., vol. 112, Birkhäuser, Basel, 1993, pp. 297–313. MR 1248412
- Franz Peherstorfer and Knut Petras, Ultraspherical Gauss-Kronrod quadrature is not possible for $\lambda >3$, SIAM J. Numer. Anal. 37 (2000), no. 3, 927–948. MR 1749243, DOI https://doi.org/10.1137/S0036142998327744
- Franz Peherstorfer and Knut Petras, Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions, Numer. Math. 95 (2003), no. 4, 689–706. MR 2013124, DOI https://doi.org/10.1007/s00211-002-0412-2
Retrieve articles in Mathematics of Computation with MSC (2000): 65D30, 65D32, 33A65.
Retrieve articles in all journals with MSC (2000): 65D30, 65D32, 33A65.
Additional Information
Miodrag M. Spalević
Affiliation:
Department of Mathematics and Informatics, University of Kragujevac, Faculty of Science, P.O. Box 60, 34000 Kragujevac, Serbia
MR Author ID:
600543
Email:
spale@kg.ac.yu
Keywords:
Averaged and anti-Gaussian quadrature formula,
optimal stratified extension,
three-term recurrence relation,
positive quadrature formula,
Gauss,
Jacobi matrix,
Kronrod
Received by editor(s):
August 9, 2005
Received by editor(s) in revised form:
May 4, 2006
Published electronically:
March 8, 2007
Additional Notes:
The author was supported in part by the Serbian Ministry of Science and Environmental Protection (Project #144005A: “Approximation of linear operators”).
Article copyright:
© Copyright 2007
American Mathematical Society