## On the embedding problem for $2^+S_4$ representations

HTML articles powered by AMS MathViewer

- by Ariel Pacetti;
- Math. Comp.
**76**(2007), 2063-2075 - DOI: https://doi.org/10.1090/S0025-5718-07-01940-0
- Published electronically: April 24, 2007
- PDF | Request permission

## Abstract:

Let $2^+S_4$ denote the double cover of $S_4$ corresponding to the element in $\operatorname {H}^2(S_4,\mathbb Z/2\mathbb Z)$ where transpositions lift to elements of order $2$ and the product of two disjoint transpositions to elements of order $4$. Given an elliptic curve $E$, let $E[2]$ denote its $2$-torsion points. Under some conditions on $E$ elements in $\operatorname {H}^1(\operatorname {Gal}_{\mathbb {Q}},E[2])\backslash \{ 0 \}$ correspond to Galois extensions $N$ of $\mathbb {Q}$ with Galois group (isomorphic to) $S_4$. In this work we give an interpretation of the addition law on such fields, and prove that the obstruction for $N$ having a Galois extension $\tilde N$ with $\operatorname {Gal}(\tilde N/ \mathbb {Q}) \simeq 2^+S_4$ gives a homomorphism $s_4^+:\operatorname {H}^1(\operatorname {Gal}_{\mathbb {Q}},E[2]) \rightarrow \operatorname {H}^2(\operatorname {Gal}_\mathbb {Q}, \mathbb {Z}/2\mathbb {Z})$. As a corollary we can prove (if $E$ has conductor divisible by few primes and high rank) the existence of $2$-dimensional representations of the absolute Galois group of $\mathbb {Q}$ attached to $E$ and use them in some examples to construct $3/2$ modular forms mapping via the Shimura map to (the modular form of weight $2$ attached to) $E$.## References

- Pilar Bayer and Gerhard Frey,
*Galois representations of octahedral type and $2$-coverings of elliptic curves*, Math. Z.**207**(1991), no. 3, 395–408. MR**1115172**, DOI 10.1007/BF02571397 - Michael Bungert,
*Construction of a cuspform of weight $3/2$*, Arch. Math. (Basel)**60**(1993), no. 6, 530–534. MR**1216696**, DOI 10.1007/BF01236077 - H. Cohen and J. Oesterlé,
*Dimensions des espaces de formes modulaires*, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 627, Springer, Berlin-New York, 1977, pp. 69–78 (French). MR**472703** - Teresa Crespo,
*Explicit construction of $\~A_n$ type fields*, J. Algebra**127**(1989), no. 2, 452–461. MR**1028464**, DOI 10.1016/0021-8693(89)90263-9 - Teresa Crespo,
*Explicit construction of $2S_n$ Galois extensions*, J. Algebra**129**(1990), no. 2, 312–319. MR**1040941**, DOI 10.1016/0021-8693(90)90223-B - Pierre Deligne and Jean-Pierre Serre,
*Formes modulaires de poids $1$*, Ann. Sci. École Norm. Sup. (4)**7**(1974), 507–530 (1975) (French). MR**379379** - Larry Dornhoff,
*Group representation theory. Part A: Ordinary representation theory*, Pure and Applied Mathematics, vol. 7, Marcel Dekker, Inc., New York, 1971. MR**347959** - Benedict H. Gross,
*Heights and the special values of $L$-series*, Number theory (Montreal, Que., 1985) CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. MR**894322** - A. Jehanne,
*Realization over $\Bbb Q$ of the groups $\~A_5$ and $\hat A_5$*, J. Number Theory**89**(2001), no. 2, 340–368. MR**1845242**, DOI 10.1006/jnth.2001.2656 - Arnaud Jehanne,
*Sur les extensions de $\textbf {Q}$ à groupe de Galois $S_4$ et $\widetilde S_4$*, Acta Arith.**69**(1995), no. 3, 259–276 (French). MR**1316479**, DOI 10.4064/aa-69-3-259-276 - Winfried Kohnen,
*Newforms of half-integral weight*, J. Reine Angew. Math.**333**(1982), 32–72. MR**660784**, DOI 10.1515/crll.1982.333.32 - J. Larry Lehman,
*Levels of positive definite ternary quadratic forms*, Math. Comp.**58**(1992), no. 197, 399–417, S17–S22. MR**1106974**, DOI 10.1090/S0025-5718-1992-1106974-1 -
*PARI/GP, version 2.2.8*, http://pari.math.u-bordeaux.fr/, 2004. - Anna Rio,
*Dyadic exercises for octahedral extensions ii*, Submitted (2005). - Bruno Schoeneberg,
*Elliptic modular functions: an introduction*, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR**412107** - Jean-Pierre Serre,
*L’invariant de Witt de la forme $\textrm {Tr}(x^2)$*, Comment. Math. Helv.**59**(1984), no. 4, 651–676 (French). MR**780081**, DOI 10.1007/BF02566371 - Goro Shimura,
*On modular forms of half integral weight*, Ann. of Math. (2)**97**(1973), 440–481. MR**332663**, DOI 10.2307/1970831 - Goro Shimura,
*Introduction to the arithmetic theory of automorphic functions*, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; Kanô Memorial Lectures, 1. MR**1291394** - Willaim Stein,
*The modular forms explorer*, http://modular.ucsd.edu/mfd/mfe/. - Gonzalo Tornaría,
*Tables of ternary quadratic forms (part of computational number theory)*, http://www.ma.utexas.edu/users/tornaria/cnt/, 2004. - Masaru Ueda,
*The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators*, J. Math. Kyoto Univ.**28**(1988), no. 3, 505–555. MR**965416**, DOI 10.1215/kjm/1250520402

## Bibliographic Information

**Ariel Pacetti**- Affiliation: Departamento de Matemática, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria. C.P:1428, Buenos Aires, Argentina
- MR Author ID: 759256
- Email: apacetti@dm.uba.ar
- Received by editor(s): July 14, 2005
- Received by editor(s) in revised form: March 11, 2006
- Published electronically: April 24, 2007
- Additional Notes: The author was supported by a CONICET grant

The author would like to thank the “Universitat de Barcelona” where this work was done - © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**76**(2007), 2063-2075 - MSC (2000): Primary 11F80; Secondary 11F37
- DOI: https://doi.org/10.1090/S0025-5718-07-01940-0
- MathSciNet review: 2336282