On the embedding problem for $2^+S_4$ representations
HTML articles powered by AMS MathViewer
- by Ariel Pacetti;
- Math. Comp. 76 (2007), 2063-2075
- DOI: https://doi.org/10.1090/S0025-5718-07-01940-0
- Published electronically: April 24, 2007
- PDF | Request permission
Abstract:
Let $2^+S_4$ denote the double cover of $S_4$ corresponding to the element in $\operatorname {H}^2(S_4,\mathbb Z/2\mathbb Z)$ where transpositions lift to elements of order $2$ and the product of two disjoint transpositions to elements of order $4$. Given an elliptic curve $E$, let $E[2]$ denote its $2$-torsion points. Under some conditions on $E$ elements in $\operatorname {H}^1(\operatorname {Gal}_{\mathbb {Q}},E[2])\backslash \{ 0 \}$ correspond to Galois extensions $N$ of $\mathbb {Q}$ with Galois group (isomorphic to) $S_4$. In this work we give an interpretation of the addition law on such fields, and prove that the obstruction for $N$ having a Galois extension $\tilde N$ with $\operatorname {Gal}(\tilde N/ \mathbb {Q}) \simeq 2^+S_4$ gives a homomorphism $s_4^+:\operatorname {H}^1(\operatorname {Gal}_{\mathbb {Q}},E[2]) \rightarrow \operatorname {H}^2(\operatorname {Gal}_\mathbb {Q}, \mathbb {Z}/2\mathbb {Z})$. As a corollary we can prove (if $E$ has conductor divisible by few primes and high rank) the existence of $2$-dimensional representations of the absolute Galois group of $\mathbb {Q}$ attached to $E$ and use them in some examples to construct $3/2$ modular forms mapping via the Shimura map to (the modular form of weight $2$ attached to) $E$.References
- Pilar Bayer and Gerhard Frey, Galois representations of octahedral type and $2$-coverings of elliptic curves, Math. Z. 207 (1991), no. 3, 395–408. MR 1115172, DOI 10.1007/BF02571397
- Michael Bungert, Construction of a cuspform of weight $3/2$, Arch. Math. (Basel) 60 (1993), no. 6, 530–534. MR 1216696, DOI 10.1007/BF01236077
- H. Cohen and J. Oesterlé, Dimensions des espaces de formes modulaires, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 627, Springer, Berlin-New York, 1977, pp. 69–78 (French). MR 472703
- Teresa Crespo, Explicit construction of $\~A_n$ type fields, J. Algebra 127 (1989), no. 2, 452–461. MR 1028464, DOI 10.1016/0021-8693(89)90263-9
- Teresa Crespo, Explicit construction of $2S_n$ Galois extensions, J. Algebra 129 (1990), no. 2, 312–319. MR 1040941, DOI 10.1016/0021-8693(90)90223-B
- Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids $1$, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975) (French). MR 379379
- Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory, Pure and Applied Mathematics, vol. 7, Marcel Dekker, Inc., New York, 1971. MR 347959
- Benedict H. Gross, Heights and the special values of $L$-series, Number theory (Montreal, Que., 1985) CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. MR 894322
- A. Jehanne, Realization over $\Bbb Q$ of the groups $\~A_5$ and $\hat A_5$, J. Number Theory 89 (2001), no. 2, 340–368. MR 1845242, DOI 10.1006/jnth.2001.2656
- Arnaud Jehanne, Sur les extensions de $\textbf {Q}$ à groupe de Galois $S_4$ et $\widetilde S_4$, Acta Arith. 69 (1995), no. 3, 259–276 (French). MR 1316479, DOI 10.4064/aa-69-3-259-276
- Winfried Kohnen, Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982), 32–72. MR 660784, DOI 10.1515/crll.1982.333.32
- J. Larry Lehman, Levels of positive definite ternary quadratic forms, Math. Comp. 58 (1992), no. 197, 399–417, S17–S22. MR 1106974, DOI 10.1090/S0025-5718-1992-1106974-1
- PARI/GP, version 2.2.8, http://pari.math.u-bordeaux.fr/, 2004.
- Anna Rio, Dyadic exercises for octahedral extensions ii, Submitted (2005).
- Bruno Schoeneberg, Elliptic modular functions: an introduction, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR 412107
- Jean-Pierre Serre, L’invariant de Witt de la forme $\textrm {Tr}(x^2)$, Comment. Math. Helv. 59 (1984), no. 4, 651–676 (French). MR 780081, DOI 10.1007/BF02566371
- Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440–481. MR 332663, DOI 10.2307/1970831
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; Kanô Memorial Lectures, 1. MR 1291394
- Willaim Stein, The modular forms explorer, http://modular.ucsd.edu/mfd/mfe/.
- Gonzalo Tornaría, Tables of ternary quadratic forms (part of computational number theory), http://www.ma.utexas.edu/users/tornaria/cnt/, 2004.
- Masaru Ueda, The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators, J. Math. Kyoto Univ. 28 (1988), no. 3, 505–555. MR 965416, DOI 10.1215/kjm/1250520402
Bibliographic Information
- Ariel Pacetti
- Affiliation: Departamento de Matemática, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria. C.P:1428, Buenos Aires, Argentina
- MR Author ID: 759256
- Email: apacetti@dm.uba.ar
- Received by editor(s): July 14, 2005
- Received by editor(s) in revised form: March 11, 2006
- Published electronically: April 24, 2007
- Additional Notes: The author was supported by a CONICET grant
The author would like to thank the “Universitat de Barcelona” where this work was done - © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 2063-2075
- MSC (2000): Primary 11F80; Secondary 11F37
- DOI: https://doi.org/10.1090/S0025-5718-07-01940-0
- MathSciNet review: 2336282