A search for Fibonacci-Wieferich and Wolstenholme primes
HTML articles powered by AMS MathViewer
- by Richard J. McIntosh and Eric L. Roettger;
- Math. Comp. 76 (2007), 2087-2094
- DOI: https://doi.org/10.1090/S0025-5718-07-01955-2
- Published electronically: April 17, 2007
- PDF | Request permission
Abstract:
A prime $p$ is called a Fibonacci-Wieferich prime if $F_{p-({p\over 5})}\equiv 0\pmod {p^2}$, where $F_n$ is the $n$th Fibonacci number. We report that there exist no such primes $p<2\times 10^{14}$. A prime $p$ is called a Wolstenholme prime if ${2p-1\choose p-1}\equiv 1\pmod {p^4}$. To date the only known Wolstenholme primes are 16843 and 2124679. We report that there exist no new Wolstenholme primes $p<10^9$. Wolstenholme, in 1862, proved that ${2p-1\choose p-1}\equiv 1\pmod {p^3}$ for all primes $p\ge 5$. It is estimated by a heuristic argument that the “probability” that $p$ is Fibonacci-Wieferich (independently: that $p$ is Wolstenholme) is about $1/p$. We provide some statistical data relevant to occurrences of small values of the Fibonacci-Wieferich quotient $F_{p-({p\over 5})}/p$ modulo $p$.References
- J. Buhler, R. Crandall, R. Ernvall, and T. Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp. 61 (1993), no. 203, 151–153. MR 1197511, DOI 10.1090/S0025-5718-1993-1197511-5
- Joe Buhler, Richard Crandall, Reijo Ernvall, Tauno Metsänkylä, and M. Amin Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (2001), no. 1-2, 89–96. Computational algebra and number theory (Milwaukee, WI, 1996). MR 1806208, DOI 10.1006/jsco.1999.1011
- Richard E. Crandall, Topics in advanced scientific computation, Springer-Verlag, New York; TELOS. The Electronic Library of Science, Santa Clara, CA, 1996. MR 1392472, DOI 10.1007/978-1-4612-2334-4
- Richard Crandall, Karl Dilcher, and Carl Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), no. 217, 433–449. MR 1372002, DOI 10.1090/S0025-5718-97-00791-6
- L.E. Dickson, The History of the Theory of Numbers, vol. 1, Reprinted: Chelsea Publishing Company, New York, 1966.
- Harold M. Edwards, Fermat’s last theorem, Graduate Texts in Mathematics, vol. 50, Springer-Verlag, New York-Berlin, 1977. A genetic introduction to algebraic number theory. MR 616635
- Richard K. Guy, Unsolved problems in number theory, 3rd ed., Problem Books in Mathematics, Springer-Verlag, New York, 2004. MR 2076335, DOI 10.1007/978-0-387-26677-0
- Wells Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113–120. MR 376606, DOI 10.1090/S0025-5718-1975-0376606-9
- Joshua Knauer and Jörg Richstein, The continuing search for Wieferich primes, Math. Comp. 74 (2005), no. 251, 1559–1563. MR 2137018, DOI 10.1090/S0025-5718-05-01723-0
- Richard J. McIntosh, On the converse of Wolstenholme’s theorem, Acta Arith. 71 (1995), no. 4, 381–389. MR 1339137, DOI 10.4064/aa-71-4-381-389
- Peter L. Montgomery, New solutions of $a^{p-1}\equiv 1\pmod {p^2}$, Math. Comp. 61 (1993), no. 203, 361–363. MR 1182246, DOI 10.1090/S0025-5718-1993-1182246-5
- —, private communication, 1993.
- Paulo Ribenboim, 13 lectures on Fermat’s last theorem, Springer-Verlag, New York-Heidelberg, 1979. MR 551363
- Paulo Ribenboim, The new book of prime number records, Springer-Verlag, New York, 1996. MR 1377060, DOI 10.1007/978-1-4612-0759-7
- Hans Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 897531, DOI 10.1007/978-1-4757-1089-2
- Z.-H. Sun, private communication, 2005.
- Zhi Hong Sun and Zhi Wei Sun, Fibonacci numbers and Fermat’s last theorem, Acta Arith. 60 (1992), no. 4, 371–388. MR 1159353, DOI 10.4064/aa-60-4-371-388
- D. D. Wall, Fibonacci series modulo $m$, Amer. Math. Monthly 67 (1960), 525–532. MR 120188, DOI 10.2307/2309169
- H. C. Williams, The influence of computers in the development of number theory, Comput. Math. Appl. 8 (1982), no. 2, 75–93. MR 649653, DOI 10.1016/0898-1221(82)90026-8
- J. Wolstenholme, On certain properties of prime numbers, Quart. J. Math 5 (1862) 35–39.
Bibliographic Information
- Richard J. McIntosh
- Affiliation: Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
- Email: mcintosh@math.uregina.ca
- Eric L. Roettger
- Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Email: roettgee@math.ucalgary.ca
- Received by editor(s): June 14, 2005
- Received by editor(s) in revised form: May 19, 2006
- Published electronically: April 17, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 2087-2094
- MSC (2000): Primary 11A07, 11A41, 11B39, 11Y99
- DOI: https://doi.org/10.1090/S0025-5718-07-01955-2
- MathSciNet review: 2336284