Numerical integrators based on modified differential equations
HTML articles powered by AMS MathViewer
- by Philippe Chartier, Ernst Hairer and Gilles Vilmart;
- Math. Comp. 76 (2007), 1941-1953
- DOI: https://doi.org/10.1090/S0025-5718-07-01967-9
- Published electronically: May 9, 2007
- PDF | Request permission
Abstract:
Inspired by the theory of modified equations (backward error analysis), a new approach to high-order, structure-preserving numerical integrators for ordinary differential equations is developed. This approach is illustrated with the implicit midpoint rule applied to the full dynamics of the free rigid body. Special attention is paid to methods represented as B-series, for which explicit formulae for the modified differential equation are given. A new composition law on B-series, called substitution law, is presented.References
- P. J. Channell and C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3 (1990), no. 2, 231–259. MR 1054575
- P. Chartier, E. Hairer, and G. Vilmart. A substitution law for B-series vector fields. INRIA Report, No. 5498, 2005.
- P. Chartier and E. Lapôtre. Reversible B-series. INRIA Report, No. 1221, 1998.
- Kang Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comput. Math. 4 (1986), no. 3, 279–289. MR 860157
- Kang Feng, Hua Mo Wu, Meng Zhao Qin, and Dao Liu Wang, Construction of canonical difference schemes for Hamiltonian formalism via generating functions, J. Comput. Math. 7 (1989), no. 1, 71–96. MR 1017182
- Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, 2nd ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006. Structure-preserving algorithms for ordinary differential equations. MR 2221614
- Ernst Hairer and Gilles Vilmart, Preprocessed discrete Moser-Veselov algorithm for the full dynamics of a rigid body, J. Phys. A 39 (2006), no. 42, 13225–13235. MR 2266054, DOI 10.1088/0305-4470/39/42/003
- E. Hairer and G. Wanner, On the Butcher group and general multi-value methods, Computing (Arch. Elektron. Rechnen) 13 (1974), no. 1, 1–15 (English, with German summary). MR 403225, DOI 10.1007/bf02268387
- Benedict Leimkuhler and Sebastian Reich, Simulating Hamiltonian dynamics, Cambridge Monographs on Applied and Computational Mathematics, vol. 14, Cambridge University Press, Cambridge, 2004. MR 2132573
- R. I. McLachlan. A new implementation of symplectic Runge–Kutta methods. To appear in SIAM J. Sci. Comput.
- Robert I. McLachlan and Antonella Zanna, The discrete Moser-Veselov algorithm for the free rigid body, revisited, Found. Comput. Math. 5 (2005), no. 1, 87–123. MR 2125692, DOI 10.1007/s10208-004-0118-6
- A. Murua. Métodos simplécticos desarrollables en P-series. Ph.D. thesis, Univ. Valladolid, 1994.
- J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian problems, Applied Mathematics and Mathematical Computation, vol. 7, Chapman & Hall, London, 1994. MR 1270017
- A. Zanna. A note on the implicit midpoint rule and the Euler equations for the rigid body. Private communication, 2005.
Bibliographic Information
- Philippe Chartier
- Affiliation: INRIA Rennes, Campus Beaulieu, F-35042 Rennes, Cedex, France
- MR Author ID: 335517
- Email: Philippe.Chartier@irisa.fr
- Ernst Hairer
- Affiliation: Section de Mathématiques, Université de Genève, CH-1211 Genève 4, Switzerland
- Email: Ernst.Hairer@math.unige.ch
- Gilles Vilmart
- Affiliation: ENS Cachan Bretagne, Campus Ker-Lann, av. Robert Schumann, F-35170 Bruz, France
- Email: Gilles.Vilmart@irisa.fr
- Received by editor(s): December 5, 2005
- Received by editor(s) in revised form: August 1, 2006
- Published electronically: May 9, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 1941-1953
- MSC (2000): Primary 65L06, 65P10, 70E15
- DOI: https://doi.org/10.1090/S0025-5718-07-01967-9
- MathSciNet review: 2336275