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A MULTIDIMENSIONAL CONTINUED FRACTION BASED
ON A HIGH-ORDER RECURRENCE RELATION

YVES TOURIGNY AND NIGEL P. SMART

Abstract. The paper describes and studies an iterative algorithm for finding
small values of a set of linear forms over vectors of integers. The algorithm
uses a linear recurrence relation to generate a vector sequence, the basic idea
being to choose the integral coefficients in the recurrence relation in such a
way that the linear forms take small values, subject to the requirement that
the integers should not become too large. The problem of choosing good coef-
ficients for the recurrence relation is thus related to the problem of finding a
good approximation of a given vector by a vector in a certain one-parameter
family of lattices; the novel feature of our approach is that practical formu-
lae for the coefficients are obtained by considering the limit as the parameter
tends to zero. The paper discusses two rounding procedures to solve the un-
derlying inhomogeneous Diophantine approximation problem: the first, which
we call “naive rounding” leads to a multidimensional continued fraction al-
gorithm with suboptimal asymptotic convergence properties; in particular,
when it is applied to the familiar problem of simultaneous rational approxi-
mation, the algorithm reduces to the classical Jacobi–Perron algorithm. The
second rounding procedure is Babai’s nearest-plane procedure. We compare
the two rounding procedures numerically; our experiments suggest that the
multidimensional continued fraction corresponding to nearest-plane rounding
converges at an optimal asymptotic rate.

1. Introduction

The classical continued fraction algorithm is closely connected with Euclid’s
algorithm for finding the greatest common divisor of two integers, and so it has a
very long history. The present paper describes a generalisation of the algorithm
applicable to a set of linear forms. Many such generalisations have been proposed
in the last 150 years; the purpose of this introductory section is to explain in broad
terms how our own generalisation differs from others, and why it is of interest.

1.1. The classical continued fraction algorithm. Let S be an interval of unit
length and let [·] : R → Z denote some function such that, for every ξ ∈ R,

(1.1) {ξ} := ξ − [ξ] ∈ S .
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Two examples are: (1) the floor function, i.e. [ξ] is the largest integer not exceeding
ξ; in that case, S = [0, 1]. (2) [ξ] is the integer nearest to ξ; in that case, S =
[−1/2, 1/2].

It is well-known that every real number θ ∈ S may be expanded as a continued
fraction. More precisely, one can write

θ =
1

c0 +
1

c1 + · · · +
1

cn−1 + �n

,

where the coefficients cn are integers, and the “remainders” �n are real numbers in
S. Both the coefficients and the remainders are obtained by successive iterates of a
map defined by

(1.2) G : S → S, G(ξ) =

{{
1
ξ

}
if ξ �= 0,

0 otherwise.

Then

(1.3) �n = Gn(θ) and cn =
[

1
�n

]
.

If one neglects the remainder �n, then one obtains a rational number

pn

qn
:=

1

c0 +
1

c1 + · · · +
1

cn−1

that approximates θ. The continued fraction expansion is analogous to the more
familiar binary and decimal expansions but, unlike these, does not rely on the choice
of a particular number as “base”. For this reason, it has been a very useful tool in
the study of the real numbers.

Some of the generic features of the expansion can be obtained by studying the
ergodic properties of the map G and its associated invariant measure. The case
where [·] is the floor function and S = [0, 1] is the most familiar; see [4] for a brief
account. The case where [·] rounds to the nearest integer and S = [−1/2, 1/2] is
qualitatively similar; see [11].

Other remarkable properties may be deduced from first principles: for example,
both pn and qn satisfy the recurrence relation

(1.4) an+1 = cnan + an−1, n ∈ N .

With the choice of starting values p0 = q−1 = 0 and p−1 = q0 = 1, the unimodularity
property

(1.5) det
(

pn qn

pn−1 qn−1

)
= ±1

follows. Furthermore, it can be shown by induction that

(1.6) θ =
pn−1�n + pn

qn−1�n + qn
.
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Hence

(1.7)
∣∣∣∣θ − pn

qn

∣∣∣∣ ≤ C

q2
n

for some constant C > 0 which depends on the particular choice of the function
[·]. The significance of this result is that the continued fraction algorithm produces
rational approximations of the real number θ which converge at a rate that is
essentially optimal as the denominators grow. Indeed, it is a standard result of
metric number theory that, for every ε > 0 and C > 0, the set of real numbers θ
such that the inequality ∣∣∣∣θ − p

q

∣∣∣∣ < C

q2+ε

holds for infinitely many pairs (p, q) ∈ Z × N has Lebesgue measure zero.

1.2. A more general problem of Diophantine approximation. We consider
the following generalisation of the problem of finding good rational approximations
of a real number. For d, k ∈ N with k ≤ d, set

k′ := d + 1 − k .

Suppose that we are given a k × (d + 1) matrix L such that

(1.8) ∆k := det

⎛
⎜⎝

L(1,1) . . . L(1,k)

... . . .
...

L(k,1) . . . L(k,k)

⎞
⎟⎠ �= 0 .

Define a set of linear forms

L(i) : Z
k × Z

k′
→ R, 1 ≤ i ≤ k,

by

(1.9) L(i)(p,q) =
k∑

j=1

L(i,j)p(j) +
k′∑

j=1

L(i,k+j)q(j) .

Definition 1.1. The Roth exponent of the pair p ∈ Zk and q ∈ Zk′
is the number

γL (p,q) := − log ‖L(p,q)‖k

log ‖q‖k′
,

where ‖ · ‖m denotes the Euclidean norm on Rm.

Definition 1.2. The best approximation exponent of the set of linear forms corre-
sponding to L is the number

γL := lim sup
‖q‖k′→∞

γL(p,q) .

We associate with the set of linear forms corresponding to the matrix L the
following approximation problem: Find sequences {pn}n∈N ⊂ Zk, {qn}n∈N ⊂ Zk′

such that

(1.10) lim
n→∞

γL (pn,qn) = γL .
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Example 1.3. Let θ ∈ Sd. Take k = d and set

L =

⎛
⎜⎜⎜⎝

1 0 0 . . . 0 −θ(1)

0 1 0 . . . 0 −θ(2)

...
...

...
...

...
...

0 0 0 . . . 1 −θ(d)

⎞
⎟⎟⎟⎠ .

Then

γL(p, q) = − log ‖p − qθ‖d

log |q| ,

and our approximation problem is equivalent to that of constructing unbounded
sequences of pn and qn such that

max
1≤i≤d

∣∣∣qnθ(i) − p(i)
n

∣∣∣ = O
(
q−γ
n

)
as qn → ∞ ,

with γ > 0 as large as possible. This is the well-known problem of simultaneous
rational approximation. Dirichlet proved that, for every θ with irrational entries,

(1.11) γL ≥ 1
d

.

It is also known that the set of the θ such that the inequality is strict has Lebesgue
measure zero.

The Jacobi–Perron algorithm is one of the earliest and best-known algorithms
proposed for the solution of this problem; it has been studied extensively over the
last hundred years (see [2, 3, 9, 5, 13] and the references therein). Although the
Jacobi–Perron algorithm actually fails to solve the problem when d > 1 (see below),
we shall nevertheless describe it briefly because it is closely related to the algorithm
which we shall develop later in this paper.

We use a starting scheme such that

(1.12) θ =
p0 + θ(1)p−1 + · · · + θ(d−1)p−d+1 + θ(d)p−d

q0 + θ(1)q−1 + · · · + θ(d−1)q−d+1 + θ(d)q−d
.

Let us suppose that, for some n ∈ N, the pairs

(pn, qn), . . . , (pn−d, qn−d)

are available, and that

(1.13) θ =
pn + �

(1)
n pn−1 + · · · + �

(dn−1)
n pn−dn+1 + �

(dn)
n pn−dn

qn + �
(1)
n qn−1 + · · · + �

(dn−1)
n qn−dn+1 + �

(dn)
n qn−dn

for some known vector �n ∈ Sd, where

dn := max
{
1 ≤ j ≤ d : �(j)

n �= 0
}

.

Equation (1.12) shows that this is true for n = 0 and that

�0 = θ .

We proceed to show how to define (pn+1, qn+1) and �n+1 so that this also holds for
n + 1. We divide the numerator and the denominator in equation (1.13) by �

(dn)
n

so that

θ =
1

�
(dn)
n

pn + �(1)
n

�
(dn)
n

pn−1 + · · · + �(dn−1)
n

�
(dn)
n

pn−dn+1 + pn−dn

1

�
(dn)
n

qn + �
(1)
n

�
(dn)
n

qn−1 + · · · + �
(dn−1)
n

�
(dn)
n

qn−dn+1 + qn−dn

.
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Now, set

c(i)
n =

⎧⎪⎪⎨
⎪⎪⎩

[
1

�
(dn)
n

]
if i = 1,

[
�(i−1)

n

�
(dn)
n

]
if 1 < i ≤ dn.

Define the next pair (pn+1, qn+1) via the recurrence relations

(1.14) pn+1 =
dn∑
i=1

c(i)
n pn−i + pn−dn

, qn+1 =
dn∑
i=1

c(i)
n qn−i + qn−dn

.

Upon substitution in the equation above, we obtain

θ =
pn+1 +

{
1

�
(dn)
n

}
pn +

{
�(1)

n

�
(dn)
n

}
pn−1 + · · · +

{
�(dn−1)

n

�
(dn)
n

}
pn−dn+1

qn+1 +
{

1

�
(dn)
n

}
qn +

{
�
(1)
n

�
(dn)
n

}
qn−1 + · · · +

{
�
(dn−1)
n

�
(dn)
n

}
qn−dn+1

.

This shows that equation (1.13) holds when n is replaced by n + 1, with

�n+1 = J (�n) ,

where J : Sd → Sd is the operator defined by

(1.15) J (i)(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{
1

�(d�)

}
if i = 1 and d� �= 0,

{
�(i−1)

�(d�)

}
if 1 < i ≤ d�,

0 otherwise

and
d� = max

{
1 ≤ j ≤ d : �(j) �= 0

}
.

Thus, the new pair (pn+1, qn+1) is entirely determined by the pairs

(pn−k+1, qn−k+1) , 1 ≤ k ≤ d + 1 ,

and the nth iterate of a map from Sd to itself. Lagarias called such algorithms
Markovian and studied their metrical properties in [9] for the case where S = [0, 1]
and [·] is the floor function. For the Jacobi–Perron algorithm, he showed that the
left-hand side of equation (1.10) is strictly positive for almost all θ, but conjectured
(on the basis of overwhelming numerical evidence) that it falls short of the best
possible value 1/d. One goal of the present paper is to present an algorithm that
does achieve this best possible value; as we shall see however, our algorithm is
not Markovian. Following Lagarias, it seems doubtful whether any Markovian
algorithm can solve the best simultaneous rational approximation problem when
d > 1.

Example 1.4. Let θ ∈ S, take k = 1 and set

L =
(
1 θ . . . θd

)
.

Then our approximation problem is equivalent to that of finding polynomials

ψn(t) := pn + q(1)
n t + · · · + q(d)

n td
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of degree d, with integer coefficients, such that

ψn(θ) = O
(
|ψn|−γ

)
as |ψn| → ∞,

with γ > 0 as large as possible. In this expression, |ψ| denotes the height of the
polynomial ψ, i.e.

|ψ| := max
0≤j≤d

∣∣∣ψ(j)
∣∣∣ , where ψ(t) = ψ(0) + ψ(1)t + · · · + ψ(d)td .

This problem is, in some sense, the dual of the approximation problem considered
in the previous example. By a well-known transference principle,

(1.16) γL = d for almost every θ ∈ S .

In the next subsection, we shall describe a class of algorithms that solve this prob-
lem.

1.3. Lattices and Diophantine approximation. One approach to solving the
Diophantine problem is to introduce a one-parameter family of lattices, and recast
it as the problem of finding a small vector in the lattice—the (small) parameter
being used to control the accuracy of the approximation.

Recall that a lattice L in Rd+1 is a set of the form

L =

⎧⎨
⎩

d+1∑
j=1

x(j)β(j) : x ∈ Z
d+1

⎫⎬
⎭ ,

where the β(i) are vectors in R
d+1. If the β(i) are linearly independent, then we

say that they form a basis for the lattice. We represent the basis as a matrix whose
columns are the basis vectors:

B :=
(
β(1) . . . β(d+1)

)
.

Now, if B̃ is another basis for the same lattice, then there exists a unimodular
matrix P with integer entries such that

B = B̃P .

It follows in particular that the number

vol(L) := |det (B)|
is independent of the choice of basis; this number is called the volume of the lattice.
An ordered basis is said to be reduced if its vectors satisfy certain requirements.
These requirements vary somewhat from one reduction definition to another, but,
from our point of view, the most important is that there exist a constant Cd > 0—
depending possibly on d, but otherwise independent of the lattice—such that the
first vector in any reduced basis B of the lattice satisfies the inequality

(1.17) ‖β(1)‖d+1 ≤ Cd vol(L)
1

d+1 .

We give two examples:
(1) In his paper, Lagarias [10] emphasizes a variant of the reduction method

developed by Minkowski where the first basis vector is the smallest non-
zero vector in the lattice. Equation (1.17) then holds with Cd equal to the
so-called Hermite constant for a lattice of dimension d + 1; this constant is
bounded above by d + 1.
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(2) A very convenient alternative definition of reduction was proposed by
Lenstra, Lenstra and Lovász [8]; importantly, they developed a practical
algorithm for finding a reduced basis and showed, among other things, that
equation (1.17) holds with Cd = 2d/2.

Returning to Diophantine approximation, let 0 < ε ∈ R and denote by Lε the
lattice whose basis is the (d + 1) × (d + 1) matrix

(1.18) B̃ε :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L(1,1) . . . L(1,k) L(1,k+1) L(1,k+2) . . . L(1,d+1)

... · · ·
...

...
... · · ·

...
L(k,1) . . . L(k,k) L(k,k+1) L(k,k+2) . . . L(k,d+1)

0 . . . 0 ε 0 . . . 0
0 . . . 0 0 ε . . . 0
... · · ·

...
...

. . .
0 . . . 0 0 0 . . . ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, suppose that Bε is a reduced basis for Lε, and denote by Pε the integral
unimodular matrix such that

Bε = B̃εPε .

We write

pε :=

⎛
⎜⎜⎝

p
(1,1)
ε

...
p
(k,1)
ε

⎞
⎟⎟⎠ and qε :=

⎛
⎜⎜⎝

p
(k+1,1)
ε

...
p
(d+1,1)
ε

⎞
⎟⎟⎠ .

The first vector of the reduced basis is then

β(1)
ε =

(
L(pε,qε)

εqε

)
.

By invoking equation (1.17), it is very easy to show that

‖L(pε,qε)‖k −−−→
ε→0

0

and

(1.19) ‖qε‖
k′
k

k′ ‖L(pε,qε)‖k ≤ C
d+1

k

d |∆k|
1
k .

Note that, for the particular cases in Examples 1.3 and 1.4, the exponent of ‖qε‖k′

on the left-hand side of the inequality is (generically) as large as possible in the
limit ε → 0.

Typically, as the small parameter ε tends to zero, it goes through a sequence
of critical values at which the reduced basis changes. A geodesic multidimensional
continued fraction algorithm then solves the Diophantine approximation problem
by (1) choosing a particular definition of reduction, (2) choosing a null sequence
from which to pick successive values of ε and (3) using an algorithm for computing
the unimodular matrix that maps the given basis to a reduced one.

It is fair to say that the particular geodesic multidimensional continued fraction
algorithm devised by Lagarias [10] is not really practical because, for the particular
choice of reduction theory, no efficient algorithm is known for finding the reduced
basis when d is large. Likewise, the approach studied in [7], which emphasises Siegel
sets rather than strict basis reduction, seems to be a purely theoretical tool. By
contrast, the approach described in [8], based on the availability of the powerful
LLL reduction algorithm, is eminently suitable for practical computations. Even so,
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in cases where a long subsequence of the Diophantine pairs (pn,qn) are required,
one would like a convenient way of finding the critical values of the parameter ε
at which the reduced basis changes, and a means of updating the reduced basis
as the parameter changes, rather than having to compute it “from scratch”. The
algorithms of Just [6] and Rössner & Schnorr [12] address this issue successfully
for the particular problem of simultaneous rational approximation considered in
Example 1.3. It is unclear whether these algorithms admit a natural extension to
the general Diophantine problem which we consider here.

1.4. Our contribution. The purpose of this paper is to describe a new multidi-
mensional version of the classical continued fraction algorithm that is, like those of
Just [6] and Rössner & Schnorr [12], motivated by the lattice-based approach—yet
parameter free. As mentioned earlier, one feature of the ordinary continued fraction
algorithm is that the numerator pn and the denominator qn of the nth convergent of
the number θ both satisfy the second-order recurrence relation (1.4), where the cn

are the coefficients in the expansion of θ. We shall use the high-order generalisation

(1.20) an+1 := c(1)
n an + · · · + c(d)

n an−d+1 + an−d,

where the coefficients c
(j)
n are integers. Given some starting values, the object is

then to choose these coefficients to produce the next Diophantine approximation.
While the recurrence relation itself is of the same form as that used in the Jacobi–
Perron algorithm (see equation (1.14)), our strategy for choosing the coefficients
is different. To describe it, let us introduce a small parameter ε and define some
“residual” vectors, say Ln(ε) ∈ Rd+1. As in the geodesic approach, we think of
this parameter as one that controls the quality of the approximation—the smaller
the parameter, the smaller the error of approximation—and that acts also as a
“penalty” parameter, constraining the growth of the Diophantine integers. By
construction, these residuals are linear combinations of the Diophantine integers;
therefore, they also satisfy the recurrence relation (1.20). So we seek coefficients
c
(j)
n that make the new residual small. This is equivalent to the inhomogeneous

Diophantine approximation problem of finding a vector in the lattice generated by
the Ln+1−i(ε), 1 ≤ i ≤ d, that is near to the vector −Ln−d(ε).

Babai [1] describes two methods for solving such a problem: the first consists
of expressing (the projection of) the approximated vector as a linear combination
of the lattice’s basis vectors, and then rounding the coefficients; we shall refer to
this method as the naive rounding procedure. The second method is analogous, but
expresses the (projection of the) approximated vector as a linear combination of
the Gram–Schmidt basis vectors obtained from the lattice’s basis, and rounds these
coefficients; we shall call it Babai’s nearest-plane rounding procedure. As it turns
out, this procedure is an important component of the LLL algorithm. Using one or
the other of these rounding procedures for ε > 0, we then show that coefficients c

(i)
n

independent of the parameter ε can be easily calculated by taking the limit ε → 0.
We emphasise this essential difference between our approach and geodesic continued
fractions: The new algorithm that we shall describe involves no “small parameter”;
the sequence of approximation is obtained by recurrence via (1.20)—the natural
generalisation of the second-order recurrence (1.4) satisfied by the numerator and
denominator of the classical continued fraction. For the particular problem of
Example 1.3, the main difference between our algorithm and those of Just [6] and
Rössner & Schnorr [12] is that, in our case, the ordering of the residuals is purely
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temporal: roughly speaking, one may say that our algorithm implements only the
size-reduction component of the LLL algorithm—not the swapping component. As
a result, the successive bases that our algorithm generates are not LLL-reduced and,
because of this, we have not been able to develop a rigorous convergence theory
analogous to that of Rössner & Schnorr [12].

Our main results are as follows: when the naive rounding procedure is used for
the particular case of simultaneous rational approximation, i.e. Example 1.3, we
show that the classical Jacobi–Perron algorithm is obtained. For the particular
case of algebraic approximation, i.e. Example 1.4, we show experimentally that,
for d > 3, the use of naive rounding produces a sequence of the (pn,qn) that is
eventually periodic, and so fails to solve the approximation problem. By contrast,
when the nearest-plane procedure is used, we observe experimentally that, for both
examples, the continued fraction algorithm produces pairs (pn,qn) with optimal
asymptotic properties. We also point out that, in the case of simultaneous rational
approximation, the resulting algorithm is not Markovian.

The remainder of the paper is as follows. In §2, we describe the rounding proce-
dures which we shall use to find good coefficients for the recurrence relation. The
algorithm for the solution of our general Diophantine problem is described in §3.
The last two sections are devoted to numerical experiments where the two round-
ing procedures are compared: in §4, we consider the problem of constructing good
simultaneous rational approximations of a given real vector; in §5, we consider the
problem of finding a good algebraic approximation of a given real number.

2. Inhomogeneous Diophantine approximation

Given a lattice L in R
d+1, and a lattice basis

B :=
(
β(1) . . .β(dL)

)
,

we shall denote by

B̂ :=
(
β̂

(1)
. . . β̂

(dL)
)

the matrix made of orthogonal vectors obtained by applying the Gram–Schmidt
algorithm to B. More precisely,

(2.1) β̂
(i)

:= β(i) −
i−1∑
j=1

µ(i,j)β̂
(j)

, µ(i,j) :=

⎧⎪⎨
⎪⎩
(
β(i),β̂

(j)
)

(
β̂

(j)
,β̂

(j)
) if j < i,

1 if i = j.

Babai [1] considers the following problem: given ξ ∈ Rd+1, find an approximation
ξL ∈ L of ξ. Following Babai, we shall describe two procedures for its solution. We
write

V := span
{

β(1), . . . , β(dL)
}

and
PV : R

d+1 → V

for the operator that projects onto the vector space V. Set

µ(dL+1,j) :=

(
ξ, β̂

(j)
)

(
β̂

(j)
, β̂

(j)
) , 1 ≤ j ≤ dL .
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First, we shall find a convenient expression for the projection of ξ in terms of the
basis B. Let us write

PV ξ =:
dL∑

j=1

ξ
(j)
B β(j) .

In order to determine the ξ
(j)
B , we first express the projection in terms of the Gram-

Schmidt basis:

PV ξ =
dL∑

j=1

µ(dL+1,j)β̂
(j)

.

Then, by (2.1), we easily recover the ξ
(j)
B via the recurrence relation

(2.2) ξ
(j)
B = µ(dL+1,j) −

dL∑
i=j+1

µ(i,j)ξ
(i)
B , j = dL, . . . , 1 .

Babai proposes two different choices for the approximation ξL ∈ L:
(1) The first choice—which we call the naive rounding approximation—is sim-

ply

ξL :=
dL∑

j=1

[
ξ
(j)
B

]
β(j) ,

where the ξ
(j)
B are obtained via the recurrence relation (2.2).

(2) The second choice—called the nearest-plane rounding approximation—is

ξL :=
dL∑

j=1

[
ξ̂
(j)
B

]
β(j),

where the ξ̂
(j)
B are obtained via the recurrence relation

(2.3) ξ̂
(j)
B = µ(dL+1,j) −

dL∑
i=j+1

µ(i,j)
[
ξ̂
(i)
B

]
, j = dL, . . . , 1 .

Comparing equations (2.2) and (2.3), we see that the difference between the two
choices is subtle. In particular, if dL = 1, then the two procedures coincide. In gen-
eral, however, they do differ, and the following concept is helpful in distinguishing
between them.

Definition 2.1. Given a basis B of V, we say that a vector η ∈ Rd+1 is B-reduced
if

PV η =
dL∑

j=1

η
(j)
B β(j), where η

(j)
B ∈ S for every 1 ≤ j ≤ dL .

Lemma 2.2. The vector ξ − ξL is B-reduced if the naive rounding procedure is
used; it is B̂-reduced if the nearest-plane rounding procedure is used.

Proof. If the naive rounding procedure is used, then

PV (ξ − ξL) = PV ξ − ξL =
dL∑

j=1

{
ξ
(j)
B

}
β(j),

and so the first statement is obvious.
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If the nearest-plane rounding procedure is used, then, by making use of equation
(2.1), we can write

PV ξ − ξL =
dL∑

j=1

µ(dL+1,j)β̂
(j) −

dL∑
j=1

dL∑
i=j

[
ξ̂
(i)
B

]
µ(i,j)β̂

(j)
.

So, after taking the inner product with β̂
(j)

, we obtain(
PV ξ − ξL, β̂

(j)
)

(
β̂

(j)
, β̂

(j)
) = µ(dL+1,j) −

dL∑
i=j

[
ξ̂
(i)
B

]
µ(i,j)

= µ(dL+1,j) −
dL∑

i=j+1

[
ξ̂
(i)
B

]
µ(i,j) −

[
ξ̂
(j)
B

]
= ξ̂

(j)
B −

[
ξ̂
(j)
B

]
=
{

ξ̂
(j)
B

}

by definition of ξ̂
(j)
B . �

3. The algorithms

The algorithms that we shall present in this section use the recurrence relations

(3.1) pn+1 =
dn∑

j=1

c(j)
n pn−j+1 + pn−dn

, qn+1 =
dn∑

j=1

c(j)
n qn−j+1 + qn−dn

,

to generate vectors of integers

pn ∈ Z
k and qn ∈ Z

k′
, −d ≤ n ∈ Z,

for the approximate solution of the Diophantine problem of §1.2. They differ in the
choice of the integer coefficients in the recurrence relation (see §3.2). To describe
them completely, we also need to specify the order dn of the recurrence relation,
as well as a starting scheme. However, for the sake of readability, we feel that it
is preferrable, in the first instance, to define the order and the starting scheme in
the context of some specific Diophantine problems where the choice is “obvious”.
It will then be clear how to define the order in the general case. The dependence of
the asymptotic behaviour of the algorithm on the starting scheme is an interesting
question, but we shall not address it. We begin this section by providing some
motivation for the choices that will be made.

3.1. Motivation. Given pn ∈ Zk and qn ∈ Zk′
, we shall use the convenient nota-

tion
Ln := L(pn,qn) .

Given a suitable starting scheme, the coefficients c
(j)
n in the recurrence relation (3.1)

should be such that, on the one hand, the new residual Ln+1 is small while, on the
other hand, the vector qn+1 is not too large. One possible strategy—motivated by
the lattice approach described in §1.3—to control the size of qn+1 is to introduce
a small parameter ε > 0 and define an extended “residual” by

(3.2) Ln(ε) :=
(

Ln

εqn

)
.

We denote by Ln(ε) the lattice generated by the basis

(3.3) Bn(ε) :=
(
Ln(ε) . . . Ln−dn+1(ε)

)
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and by Vn(ε) the corresponding vector space. The operator of projection onto
Vn(ε) will be denoted Pn(ε), and we shall write B̂n(ε) for the Gram-Schmidt basis
obtained from Bn(ε).

Now, let us assume that, for some n ≥ 0, the basis Bn(ε) is available, and write

(3.4) µ(i,j)
n (ε) :=

⎧⎪⎨
⎪⎩
(
Ln+1−i(ε),β̂

(j)
n (ε)

)
(
β̂

(j)
n (ε),β̂

(j)
n (ε)

) if j < i,

1 if j = i,

1 ≤ i ≤ dn + 1,

for the Gram-Schmidt coefficients. Since the extended residual is a linear combina-
tion of the pn and qn, it satisfies the same recurrence relation, i.e.

(3.5) Ln+1(ε) = c(1)
n Ln(ε) + · · · + c(dn)

n Ln−dn+1(ε) + Ln−dn
(ε) .

The problem of finding good coefficients is then the same as that of finding a good
approximation of −Ln−dn

(ε) in the lattice Ln(ε). So one could use one of the two
procedures described in §2 with

ξ := −Ln−dn
(ε), B := Bn(ε)

to find an element

ξL(ε) =
dn∑

j=1

c(j)
n (ε)Ln−i(ε) ∈ Ln(ε)

close to ξ. Using these c
(j)
n (ε) in the relation (3.5) would produce a new residual

that is Bn(ε)-reduced if the naive rounding procedure is used, and B̂n(ε)-reduced
if the nearest-plane rounding procedure is used. Now, the projection of −Ln−d(ε)
onto Vn(ε) is

−Pn(ε)Ln−d(ε) = −
dn∑
i=1

µ(dn+1,i)
n (ε)Ln−i(ε) .

So, for example, the nearest-plane procedure described in §2 would then yield the
approximation

ξLn(ε) :=
dn∑

j=1

c(j)
n (ε)Ln−j+1(ε), c(j)

n (ε) :=
[
ξ̂(j)
n (ε)

]
,

where

(3.6) ξ̂(j)
n (ε) = −µ(dn+1,j)

n (ε) −
dn∑

i=j+1

[
ξ̂(i)
n (ε)

]
µ(i,j)

n (ε), j = dn, . . . , 1 .

The drawback of this approach is that these integers are ε-dependent; the pres-
ence of such a parameter seems undesirable. We remark that, in the case of the
geodesic approach described in §1.3, the parameter ε is destined to tend to zero.
Now, Bn(0) contains at most k linearly independent vectors, so that the Gram–
Schmidt procedure applied directly to Bn(0) breaks down prematurely unless k = d.
It turns out, however, that if one orthogonalises Bn(ε), ε �= 0, before taking the
limit as ε → 0, then the Gram–Schmidt coefficients have limiting values that can be
computed easily, even if k < d. Our strategy for choosing the coefficients is based
on that simple observation.
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In order to describe the asymptotic behaviour of B̂n(ε), we define vectors L̂(i)
n

and q̂(i)
n for n ≥ 0 and 1 ≤ i ≤ d + 1 by recurrence on i as follows:

(3.7) L̂(i)
n := Ln−i+1 −

i−1∑
j=1

ν(i,j)
n L̂(j)

n , q̂(i)
n := qn−i+1 −

i−1∑
j=1

ν(i,j)
n q̂(j)

n ,

where

(3.8) ν(i,j)
n :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ln−i+1,L̂(j)
n )(

L̂
(j)
n ,L̂

(j)
n

) if L̂(j)
n �= 0,

⎛
⎜⎜⎜⎝qn−i+1−

j−1∑
�=1

L̂(�)
n �=0

ν(i,�)
n q̂(�)

n ,q̂(j)
n

⎞
⎟⎟⎟⎠

(
q̂

(j)
n ,q̂

(j)
n

) if L̂(j)
n = 0 and q̂(j)

n �= 0,

0 otherwise.

It will be convenient to use the notation

Om(εγ) :=

⎛
⎜⎝

O(εγ)
...

O(εγ)

⎞
⎟⎠ ∈ R

m, m ∈ N .

Theorem 3.1.

β̂
(i)

n (ε) =

(
L̂(i)

n

εq̂(i)
n

)
− ε2

i−1∑
j=1

L̂(j)
n �=0

(
q̂(i)

n , q̂(j)
n

)
(
L̂(j)

n , L̂(j)
n

)
(

L̂(j)
n

εq̂(j)
n

)
+
(

Ok(ε4)
Ok′(ε3)

)

and

µ(i,j)
n (ε) = ν(i,j)

n + O(ε2) as ε → 0 .

Proof. See Appendix A. �

Corollary 3.2. Let p ∈ Rk and q ∈ Rk′
and set

L(ε) :=
(
L(p,q)

εq

)
, where L := L(p,q) .

Then(
L(ε), β̂

(j)

n (ε)
)

(
β̂

(j)

n (ε), β̂
(j)

n (ε)
)

−−−→
ε→0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(L(p,q),L̂(j)
n )(

L̂
(j)
n ,L̂

(j)
n

) if L̂(j)
n �= 0,

⎛
⎜⎜⎜⎝q−

j−1∑
�=1

L̂(�)
n �=0

(L(p,q),L̂
(�)
n )

(L̂(�)
n ,L̂

(�)
n )

q̂(�)
n ,q̂(j)

n

⎞
⎟⎟⎟⎠

(
q̂

(j)
n ,q̂

(j)
n

) if L̂(j)
n = 0 and q̂(j)

n �= 0.
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3.2. Choosing the coefficients in the recurrence relation. We shall consider
two choices for the coefficients in equation (3.1); although they coincide when d = 1,
we emphasise that, in higher dimension, they lead to two distinct algorithms with,
as we shall see, very different asymptotic behaviours. The first is based on the naive
rounding procedure:

(3.9) c(j)
n =

[
η(j)

n

]
(Naive rounding)

where

(3.10) η(j)
n = −ν(dn+1,j)

n −
dn∑

i=j+1

η(i)
n ν(i,j)

n , j = dn, . . . , 1 .

The second is based on Babai’s nearest-plane rounding procedure:

(3.11) c(j)
n =

[
η̂(j)

n

]
(Nearest-plane rounding)

where

(3.12) η̂(j)
n = −ν(dn+1,j)

n −
dn∑

i=j+1

c(i)
n ν(i,j)

n , j = dn, . . . , 1 .

4. Simultaneous rational approximation

We return to the problem considered in Example 1.3; the matrix L is then

(4.1) L =

⎛
⎜⎜⎜⎝

1 0 . . . 0 −θ(1)

0 1 . . . 0 −θ(2)

...
...

. . .
...

0 0 . . . 1 −θ(d)

⎞
⎟⎟⎟⎠ .

First, we choose some starting values for the pn and the qn. Let e(j) be the jth
vector in the canonical basis for Rd. We set

pn :=

{
e(−n) if −d ≤ n ≤ −1,

0 if n = 0
and qn :=

{
0 if −d ≤ n ≤ −1,

1 if n = 0.

Because k = d in this case, the formulae in §3 take on a simpler form. In particu-
lar, the L̂(j)

n are simply the orthogonal vectors obtained when the Gram–Schmidt
procedure is applied to the vectors Ln+1−j , where

Ln := pn − qnθ ∈ R
d .

The ν
(i,j)
n are the corresponding Gram–Schmidt coefficients. We set

(4.2) dn = max {1 ≤ i ≤ d : Ln+1−j , 1 ≤ j ≤ i, are linearly independent} .

We shall write
Bn :=

(
Ln . . . Ln−dn+1

)
and denote by Vn the vector space with basis Bn. The corresponding Gram–
Schmidt basis will be denoted by

B̂n :=
(
L̂(1)

n . . . L̂(dn)
n

)
.
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Note that the starting scheme is such that B−1 = B̂−1 is the canonical basis for
Rd. Furthermore

(4.3) −L0 := θ(1)L−1 + · · · + θ(d)L−d = θ(1)L̂−1 + · · · + θ(d)L̂−d .

The significance of this identity will soon be apparent.
When representing vectors in Vn, we shall sometimes need to go from one basis

to another; the following lemma will therefore be helpful.

Lemma 4.1. We have

Ln−i+1 =
i∑

j=1

ν(i,j)
n L̂(j)

n , L̂(i)
n =

i∑
j=1

λ(i,j)
n Ln−j+1, 1 ≤ i ≤ dn,

where

ν(i,j)
n =

(
Ln−i+1, L̂

(j)
n

)
(
L̂(j)

n , L̂(j)
n

) , 1 ≤ j < i ≤ dn + 1,

and

λ(i,j)
n :=

{∑i−j
�=1(−1)�ν

(i,j+�−1)
n

∏�−1
m=1 ν

(j+m,j+m−1)
n if i > j,

1 if i = j.

Furthermore, if
dn∑
i=1

σ
(i)
Bn

Ln−i+1 =
dn∑
i=1

σ
(i)

B̂n
L̂(i)

n ,

then

σ
(j)

B̂n
=

dn∑
i=j

ν(i,j)
n σ

(i)
Bn

and σ
(j)
Bn

=
dn∑
i=j

λ(i,j)
n σ

(i)

B̂n
, 1 ≤ j ≤ dn .

Let η ∈ Rdn be defined as in equation (3.10). We have

Lemma 4.2.
−Ln−dn

= η(1)
n Ln + · · · + η(dn)

n Ln−dn+1 .

Proof. By equation (4.2), the vectors

Ln, . . . , Ln−dn+1,

are linearly independent whilst the vectors

Ln, . . . , Ln−dn+1, Ln−dn
,

are dependent. Hence, Ln−dn
can be expressed as a linear combination of the

Ln−i+1, 1 ≤ i ≤ dn. Clearly, by definition of the Gram-Schmidt coefficients,

Ln−dn
=

dn∑
i=1

ν(dn+1,i)
n L̂(i)

n .

The result then follows from Lemma 4.1 and equation (3.10). �

It is instructive to compare the algorithm based on naive rounding with the one
that uses nearest-plane rounding. Recall that the only difference between the two
algorithms is in the choice of the coefficients c

(j)
n that are used in the recurrence

relation (3.1); see §3.2.
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4.1. Naive rounding. In this subsection, we shall show that the use of naive
rounding produces the same pn and qn as the classical Jacobi–Perron algorithm
described in the introduction.

Definition 4.3. We define the sequence {�n}n∈N ⊂ Sd of the (naive rounding)
remainders as follows:

�0 := θ and �
(j)
n+1 :=

{{
η
(j)
n

}
if 1 ≤ j ≤ dn,

0 otherwise.

Lemma 4.4. For every n ∈ N,

−Ln = �(1)
n Ln−1 + · · · + �(dn−1)

n Ln−dn−1 .

Proof. For n = 0, this is a consequence of the starting scheme; see equation (4.3).
Now, let n ≥ 0. By construction,

−Ln+1 = −c(1)
n Ln − · · · − c(dn)

n Ln−dn+1 − Ln−dn
,

where (see equation (3.9))

c(j)
n =

[
η(j)

n

]
, 1 ≤ j ≤ dn .

The result then follows from Lemma 4.2 and the definition of �n. �

The lemma brings out an obvious relationship between the remainder and the
order of the recurrence relation:

(4.4) dn :=

{
0 if �n = 0,

max
{

1 ≤ j ≤ d : �
(j)
n �= 0

}
otherwise.

In particular, d0 = d unless θ(d) = 0. The sequence {dn}n∈N is monotonically
decreasing and so its terms must eventually equal the limit, say d∞. We conjecture
that

d∞ = rank(θ),

where
rank(θ) = dim spanQ

{
1, θ(1), . . . , θ(d)

}
.

Corollary 4.5. If dn = d, then

vol (Ln) =
∣∣∣�(d)

n

∣∣∣ vol (Ln−1) .

Proof. We have

vol (Ln) = |det (Ln,Ln−1, . . . ,Ln−d+1)|
= |det (Ln−1, . . . ,Ln−d+1,Ln)|

=

∣∣∣∣∣∣−det

⎛
⎝Ln−1, . . . ,Ln−d+1,

d∑
j=1

�(j)
n Ln−j

⎞
⎠
∣∣∣∣∣∣

=
∣∣∣�(d)

n det (Ln−1, . . . ,Ln−d+1,Ln−d)
∣∣∣ = ∣∣∣�(d)

n

∣∣∣ vol (Ln−1) .

�
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Theorem 4.6. For every n ∈ N,

�n+1 = J (�n) .

Proof. Lemma 4.4 yields

−Ln−dn
=

1

�
(dn)
n

(
Ln + �(1)

n Ln−1 + · · · + �(dn−1)
n Ln−dn+1

)
.

Hence, by using Lemma 4.2 and equating coefficients, we find

(4.5) η(j)
n =

⎧⎪⎪⎨
⎪⎪⎩

1

�
(dn)
n

if j = 1,

�(j−1)
n

�
(dn)
n

if 1 < j ≤ dn.

The result then follows from Definition 4.3. �

Corollary 4.7. When naive rounding is used, the classical Jacobi–Perron algorithm
is obtained.

4.2. Nearest-plane rounding. We now turn to the algorithm obtained when
nearest-plane rounding is used. The concept of remainder, which we encountered
when studying the Jacobi–Perron algorithm, has a natural counterpart:

Definition 4.8. We define the sequence {�̂n}n∈N ⊂ S
d of the (nearest-plane round-

ing) remainders by

�̂0 := θ and �̂
(j)
n+1 :=

{{
η̂
(j)
n

}
if 1 ≤ j ≤ dn,

0 otherwise.

The nearest-plane counterpart of Lemma 4.4 is

Lemma 4.9.
−Ln = �̂(1)

n L̂(1)
n−1 + · · · + �̂(dn−1)

n L̂(dn−1)
n−1 .

Its proof proceeds along the same lines. It is also straigtforward to show that

dn = max
{

1 ≤ j ≤ d : �̂(j)
n �= 0

}
and, if dn = d,

(4.6) vol (Ln) =
∣∣∣�̂(d)

n

∣∣∣ vol (Ln−1) .

Next, we proceed to elaborate the relationship between successive remainders.
Let ηn ∈ R

dn be the vector defined via the recurrence relation (3.10). We have

Lemma 4.10.

η(1)
n =

1

�̂
(dn)
n

, η(j+1)
n =

1

�̂
(dn)
n

dn∑
i=j

λ
(i,j)
n−1�̂

(i)
n , 1 ≤ j < dn .

Proof. By Lemma 4.9 and Lemma 4.1, we can write

Ln = −
dn−1∑
j=1

dn−1∑
i=j

λ
(i,j)
n−1�̂

(i)
n Ln−j .

The result then follows from Lemma 4.2 after equating the coefficients. �
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Proposition 4.11.

η̂(j)
n = −

dn∑
i=j+1

λ(i,j)
n �̂

(i)
n+1 +

1

�̂
(dn)
n

{
1 if j = 1,∑dn

i=j−1 λ
(i,j−1)
n−1 �̂

(i)
n if 1 < j ≤ dn.

Proof. By equation (3.12) and Definition 4.8,
dn∑
i=j

ν(i,j)
n

[
η̂(i)

n

]
= −ν(dn+1,j)

n − �̂(j)
n , 1 ≤ j ≤ dn .

On the other hand, by equation (3.10),
dn∑
i=j

ν(i,j)
n η(i)

n = −ν(dn+1,j)
n , 1 ≤ j ≤ dn .

Upon subtraction, we find
dn∑
i=j

ν(i,j)
n

(
η(i)

n −
[
η̂(i)

n

])
= �̂

(j)
n+1, 1 ≤ j ≤ dn .

Hence, by Lemma 4.1,

η(j)
n −

[
η̂(j)

n

]
=

dn∑
i=j

λ(i,j)
n �̂

(i)
n+1, 1 ≤ j ≤ dn .

The result then follows from Lemma 4.10. �

The proposition implies that, in the case d > 1, the remainders cannot be ex-
pressed as the successive iterates of a map. Indeed,

�̂
(dn)
n+1 =

{
�̂
(dn−1)
n

�̂
(dn)
n

+ λ
(dn,dn−1)
n−1

}
.

Now, it is clear that the coefficient

λ
(dn,dn−1)
n−1 = −ν

(dn,dn−1)
n−1

does vary with n. In other words, when nearest-plane rounding is used, the resulting
algorithm is not Markovian.

4.3. Convergence. In this subsection, we examine the convergence properties of
the algorithm based on the use of nearest-plane rounding. Although the motivation
for the algorithm is quite compelling, we have not succeeded in developing a rigorous
theory. Equation (4.6) implies that

vol (Ln) = O
(
2−n
)

as n → ∞ .

One would hope that some estimate for the residual Ln could be deduced from
this, but experiments show that the angles between successive residuals can be
arbitrarily small.

Another possible line of attack is to take Lemma 4.9 as a starting point. Then,
by the orthogonality of the L̂(j)

n , we obtain

(4.7) ‖Ln+1‖2 =
dn∑

j=1

∣∣∣�̂(j)
n+1

∣∣∣2 ∥∥∥L̂(j)
n

∥∥∥2 ≤ 1
4

(
‖Ln‖2 + · · · + ‖Ln−d+1‖2

)
.
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Table 1. The Roth exponent γn, as defined by equation (4.8).
The columns headed (n-r) and (n-p-r) correspond to naive rounding
and nearest-plane rounding respectively.

d = 1 d = 2 d = 3 d = 4 d = 5
n n-r n-p-r n-r n-p-r n-r n-p-r n-r n-p-r
2 1.81 0.37 0.94 0.70 1.29 0.37 1.54 0.37 0.38
4 1.39 0.74 0.90 0.42 0.69 0.13 0.12 0.24 0.16
8 1.18 0.34 0.55 0.20 0.37 0.20 0.26 0.11 0.20

16 1.04 0.38 0.53 0.21 0.37 0.21 0.28 0.16 0.22
32 1.07 0.34 0.52 0.20 0.34 0.19 0.25 0.12 0.20
64 1.03 0.41 0.51 0.22 0.34 0.14 0.27 0.09 0.19

128 1.00 0.40 0.51 0.19 0.34 0.15 0.25 0.11 0.20
256 1.00 0.41 0.50 0.22 0.33 0.14 0.25 0.10 0.20
512 1.00 0.38 0.50 0.22 0.34 0.14 0.25 0.11 0.20

1024 1.00 0.40 0.50 0.23 0.33 0.14 0.25 0.10 0.20

So (the square of the norm of) the residual is dominated by a solution of the
recurrence relation

4 an+1 = an + · · · + an−d+1 .

The characteristic polynomial associated with this recurrence relation is

ϕd(t) = 4 td − td−1 − · · · − t − 1 .

An explicit calculation shows that, when d ≤ 3, the roots of ϕd lie within the
complex unit disk. Hence,

‖Ln‖ −−−−→
n→∞

0 if d = 2 or 3 .

Example 4.12. Let θ ∈ Rd have random entries that are independent and uni-
formly distributed in S. Table 1 shows the Roth exponents

(4.8) γn := − ln ‖pn − qnθ‖
ln |qn|

for various values of n and a typical realisation of θ. We have used the well-known
MAPLE symbolic algebra package to carry out the calculations; these were done in
floating-point arithmetic, but with enough precision (up to 2000 significant digits
in some cases) to ensure that the results are accurate. It is apparent that, when
nearest-plane rounding is used,

γn −−−−→
n→∞

1
d

.

Thus, we conjecture that the approximations produced by the algorithm converge
at an optimal rate.

By contrast, the naive rounding procedure leads to an algorithm that produces
a sequence with a suboptimal rate of convergence. This is a known shortcoming of
the classical Jacobi–Perron algorithm [3].
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5. Algebraic approximation

We return to the problem considered in Example 1.4, where

(5.1) L =
(
1 θ · · · θd

)
and θ ∈ S is given. Here k = 1, so we write Ln instead of Ln. The formulae of §3.1
simplify considerably: assuming that Ln �= 0, we have

L̂(1)
n = Ln and ν(i,1)

n =
Ln−i+1

Ln
.

So, by induction on j, equation (3.7) yields

L̂(j)
n = 0 for every j ≥ 2 .

Equation (3.8) then becomes

ν(i,j)
n =

⎧⎪⎪⎨
⎪⎪⎩

Ln−i+1
Ln

if j = 1,
(qn−i+1−ν(i,1)

n q̂(1)
n ,q̂(j)

n )(
q̂

(j)
n ,q̂

(j)
n

) if j > 1 and q̂(j)
n �= 0

0 otherwise

,

where

q̂(i)
n = qn−i+1 −

i−1∑
j=1

ν(i,j)
n q̂(j)

n .

It remains to define the order of the recurrence relations (3.1), and the starting
values. We set

dn :=

⎧⎪⎪⎨
⎪⎪⎩

0 if Ln = 0,

1 if Ln �= 0 and q̂(2)
n = 0,

min
{

2 ≤ i ≤ d : q̂(i)
n �= 0

}
otherwise

and

(5.2) (pn,qn) :=

{
(1,0) if n = −d,

(0, e(d+n)) if −d < n ≤ 0,

where e(i) is the ith canonical basis vector in Rd.

Example 5.1. Let θ be a random variable uniformly distributed in S and let θn

denote the solution of the polynomial equation

pn + q(1)
n θn + · · · + q(d)

n θd
n = 0

that is nearest to θ. We postulate the existence of numbers α and β such that, as
n → ∞,

(5.3) en := θ − θn ∼ c exp (−nα) and |ψn| ∼ c′ exp (nβ) ,

where
ψn(t) := pn + q(1)

n t + · · · + q(d)
n td .

Then the numbers

(5.4) αn := − ln |θ − θn|
n

and βn :=
ln |ψn|

n
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Table 2. Estimates of the exponents αn and βn, as defined by
equation (5.4) and of the Roth exponent γn when naive rounding
is used.

d = 2 d = 3 d = 4 d = 5
n αn βn γn αn βn γn αn βn γn αn βn γn

8 2.10 .78 1.39 .94 .14 7.88 .32 .09 4.73 .32 .09 4.73
16 1.41 .47 1.90 .47 .14 3.94 .47 .07 7.88 .47 .07 7.88
32 1.17 .38 2.06 .24 .10 4.86 .24 .06 5.48 .24 .06 5.48
64 1.00 .34 1.94 .59 .14 3.11 — — — — — —

128 0.99 .33 2.01 .60 .14 3.06 — — — — — —
256 1.05 .35 2.00 .57 .14 3.04 — — — — — —
512 1.03 .34 2.00 .55 .14 3.00 — — — — — —

1024 1.01 .34 2.00 .54 .13 3.02 — — — — — —

should approximate the numers α and β respectively for n large. The results of a
numerical experiment are displayed in Tables 2 and 3. The tables also show the
Roth exponent

γn := − ln |Ln|
ln |ψn|

for various values of n and d.
Table 2 corresponds to the case where naive rounding is used. It is apparent

that
γn −−−−→

n→∞
d, d = 2, 3 .

However, for d = 4, 5, the algorithm produces consecutive coefficient vectors cn

that vanish. As a consequence, the (pn,qn) eventually form a periodic sequence,
and so there is no convergence.

Table 3 corresponds to the case where nearest-plane rounding is used. The results
suggest that

γn −−−−→
n→∞

d, d = 2, 3, 4, 5 .

We have also carried out calculations up to d = 8; they are not shown in the table,
but the results are qualitatively similar, namely that an optimal rate of convergence
is obtained. Our experience also suggests that the nearest-plane procedure never
produces trivial cn.

Appendix A. Proof of Theorem 3.1

We shall need two lemmata.

Lemma A.1. (
L̂(i)

n , L̂(j)
n

)
= 0 for every 1 ≤ j < i ≤ dn .

Proof. By induction on i: For i = 2, we have(
L̂(2)

n , L̂(1)
n

)
(
L̂(1)

n , L̂(1)
n

) =

(
Ln−1, L̂

(1)
n

)
(
L̂(1)

n , L̂(1)
n

) − ν(2,1)
n = 0 .
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Table 3. Estimates of the exponents αn and βn, as defined by
equation (5.4) and of the Roth exponent γn when nearest-plane
rounding is used.

d = 2 d = 3 d = 4 d = 5
n αn βn γn αn βn γn αn βn γn αn βn γn

8 3.15 .96 2.24 2.67 .63 3.20 2.24 .37 5.02 1.87 .29 5.59
16 2.56 .82 2.17 2.44 .59 3.18 2.33 .45 4.24 1.66 .22 6.37
32 2.37 .75 2.16 2.58 .62 3.19 2.29 .43 4.32 1.95 .34 4.85
64 2.37 .78 2.06 2.46 .63 2.93 2.30 .54 3.40 2.04 .33 5.11

128 2.37 .78 2.02 2.26 .55 3.10 2.30 .46 4.06 2.02 .34 5.04
256 2.34 .78 2.01 2.28 .57 3.02 2.28 .46 3.93 2.14 .38 4.58
512 2.38 .79 2.01 2.25 .56 2.99 2.20 .44 4.00 2.09 .35 5.01

1024 2.46 .82 2.00 2.26 .56 3.00 2.14 .43 4.00 2.08 .35 5.01

Next, suppose that the result holds up to and including some 2 ≤ i < dn. We shall
show that (

L̂(i+1)
n , L̂(j)

n

)
= 0 for every 1 ≤ j ≤ i .

If L̂(j)
n = 0, this is trivial. Otherwise,

(
L̂(i+1)

n , L̂(j)
n

)
(
L̂(j)

n , L̂(j)
n

) =

(
Ln−i, L̂

(j)
n

)
(
L̂(j)

n , L̂(j)
n

) −
i∑

�=1

ν(i+1,�)
n

(
L̂(�)

n , L̂(j)
n

)
(
L̂(j)

n , L̂(j)
n

)

=

(
Ln−i, L̂

(j)
n

)
(
L̂(j)

n , L̂(j)
n

) −
i∑

�=j

ν(i+1,�)
n

(
L̂(�)

n , L̂(j)
n

)
(
L̂(j)

n , L̂(j)
n

) by the induction hypothesis

= −
i∑

�=j+1

ν(i+1,�)
n

(
L̂(�)

n , L̂(j)
n

)
(
L̂(j)

n , L̂(j)
n

) by definition of ν(i+1,j)
n

= 0 by the induction hypothesis, since j < � ≤ i .

�

Lemma A.2. For every 2 ≤ j < dn,

L̂(j)
n = 0 =⇒

(
q̂(i)

n , q̂(j)
n

)
= 0 for every j < i ≤ dn .

Proof. Suppose that L̂(j)
n = 0, and let i > j. By definition of q̂(i)

n ,

(A.1)

(
q̂(i)

n , q̂(j)
n

)
(
q̂(j)

n , q̂(j)
n

) =

(
qn−i+1 −

∑i−1
�=1 ν

(i,�)
n q̂(�)

n , q̂(j)
n

)
(
q̂(j)

n , q̂(j)
n

) .
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On the other hand, by definition of ν
(i,j)
n , since L̂(j)

n = 0,

ν(i,j)
n =

⎛
⎜⎝qn−i+1 −

i−1∑
�=1

L̂(�)
n �=0

ν
(i,�)
n q̂(�)

n , q̂(j)
n

⎞
⎟⎠

(
q̂(j)

n , q̂(j)
n

) .

Subtract this equation from equation (A.1) to obtain

(A.2)

(
q̂(i)

n , q̂(j)
n

)
(
q̂(j)

n , q̂(j)
n

) = −
j−1∑
�=1

L̂(�)
n =0

ν(i,�)
n

(
q̂(�)

n , q̂(j)
n

)
(
q̂(j)

n , q̂(j)
n

) −
i−1∑

�=j+1

ν(i,�)
n

(
q̂(�)

n , q̂(j)
n

)
(
q̂(j)

n , q̂(j)
n

) .

We use induction on j: For j = 2, this gives, since L̂(1)
n �= 0,

(
q̂(i)

n , q̂(2)
n

)
(
q̂(2)

n , q̂(2)
n

) = −
i−1∑
�=3

ν(i,�)
n

(
q̂(�)

n , q̂(2)
n

)
(
q̂(2)

n , q̂(2)
n

) .

It is then straightforward to use induction (on i) to show that the right-hand side
is zero for every 2 ≤ i ≤ dn.

Next, we make the induction hypothesis (on j), i.e. we suppose that the result
contained in the lemma holds for every 2 ≤ j ≤ j′, for some 2 ≥ j′ < dn − 1. If
L̂(j′+1)

n = 0, then we can set j := j′ + 1 in equation (A.2) and use the induction
hypothesis to obtain

(
q̂(i)

n , q̂(j)
n

)
(
q̂(j)

n , q̂(j)
n

) = −
i−1∑

�=j+1

ν(i,�)
n

(
q̂(�)

n , q̂(j)
n

)
(
q̂(j)

n , q̂(j)
n

) .

For i = j + 1, the sum is empty and so the right-hand side is zero. It then follows
easily by induction on i that it is zero for every i > j + 1. This completes the
induction on j, and the proof is done. �

We are now in a position to prove the theorem. We have

β̂
(1)

n (ε) = Ln(ε) =

(
L̂(1)

n

εq̂(1)
n

)

and so

(
Ln−i+1(ε), β̂

(1)

n (ε)
)

(
β̂

(1)

n (ε), β̂
(1)

n (ε)
) =

(
Ln−i+1, L̂

(1)
n

)
+ ε2

(
qn−i+1, q̂

(1)
n

)
(
L̂(1)

n , L̂(1)
n

)
+ ε2

(
q̂(1)

n , q̂(1)
n

) .
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Hence, for 1 ≤ i ≤ dn + 1,

µ(i,1)
n (ε) =

1(
L̂(1)

n , L̂(1)
n

)
(
Ln−i+1, L̂

(1)
n

)
+ ε2

(
qn−i+1, q̂

(1)
n

)
1 + ε2

(
q̂

(1)
n ,q̂

(1)
n

)
(
L̂

(1)
n ,L̂

(1)
n

)

=
1(

L̂(1)
n , L̂(1)

n

) ((Ln−i+1, L̂(1)
n

)
+ ε2

(
qn−i+1, q̂(1)

n

))

×

⎛
⎝1 − ε2

(
q̂(1)

n , q̂(1)
n

)
(
L̂(1)

n , L̂(1)
n

) + O(ε4)

⎞
⎠ ,

and so, after a little re-arrangement,

(A.3) µ(i,1)
n (ε) = ν(i,1)

n + ε2

(
qn−i+1 − ν

(i,1)
n q̂(1)

n , q̂(1)
n

)
(
L̂(1)

n , L̂(1)
n

) + O(ε4) as ε → 0 .

Next, we shall use induction on j to show that, for 1 ≤ j ≤ dn and j < i ≤ dn+1,

(A.4) Ln−i+1(ε) −
j∑

�=1

µ(i,�)
n (ε)β̂

(�)

n (ε) =

(
Ln−i+1 −

∑j
�=1 ν

(i,�)
n L̂(�)

n

ε
(
qn−i+1 −

∑j
�=1 ν

(i,�)
n q̂(�)

n

))

−ε2

j∑
�=1

L̂(�)
n �=0

(
qn−i+1 −

∑j
m=1 ν

(i,m)
n q̂(m)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

)
(

L̂(�)
n

εq̂(�)
n

)
+
(

Ok(ε4)
Ok′(ε3)

)
as ε → 0 .

By making use of equation (A.3), we have, for j = 1,

Ln−i+1(ε) − µ(i,1)
n (ε)β̂

(1)

n (ε) =
(

Ln−i+1

εqn−i+1

)

−

⎛
⎝ν(i,1)

n + ε2

(
qn−i+1 − ν

(i,1)
n q̂(1)

n , q̂(1)
n

)
(
L̂(1)

n , L̂(1)
n

) + O(ε4)

⎞
⎠( L̂(1)

n

εq̂(1)
n

)

=

(
Ln−i+1 − ν

(i,1)
n L̂(1)

n

ε
(
qn−i+1 − ν

(i,1)
n q̂(1)

n

))−ε2

(
qn−i+1 − ν

(i,1)
n q̂(1)

n , q̂(1)
n

)
(
L̂(1)

n , L̂(1)
n

)
(

L̂(1)
n

εq̂(1)
n

)
+
(

Ok(ε4)
Ok′(ε3)

)

as ε → 0. So equation (A.4) holds for j = 1.
Next, we make the induction hypothesis, namely that equation (A.4) holds for

some 1 ≤ j < dn. For i = j + 1, this yields

(A.5) β̂
(j+1)

n (ε) =

(
L̂(j+1)

n

εq̂(j+1)
n

)
− ε2

j∑
�=1

L̂(�)
n �=0

(
q̂(j+1)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

)
(

L̂(�)
n

εq̂(�)
n

)
+
(

Ok(ε4)
Ok′(ε3)

)
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as ε → 0. Then(
Ln−i+1(ε), β̂

(j+1)

n (ε)
)

=
(
Ln−i+1, L̂(j+1)

n

)
+ ε2

(
qn−i+1, q̂(j+1)

n

)

− ε2

j∑
�=1

L̂(�)
n �=0

(
q̂(j+1)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

) (Ln−i+1, L̂(�)
n

)
+ O

(
ε4
)

=
(
Ln−i+1, L̂(j+1)

n

)
+ ε2

⎛
⎜⎜⎝qn−i+1 −

j∑
�=1

L̂(�)
n �=0

ν(i,�)
n q̂(�)

n , q̂(j+1)
n

⎞
⎟⎟⎠+ O(ε4)

=
(
Ln−i+1, L̂(j+1)

n

)
+ ε2

(
qn−i+1 −

j∑
�=1

ν(i,�)
n q̂(�)

n , q̂(j+1)
n

)
+ O(ε4) as ε → 0,

by virtue of Lemma A.2. Also,

(
β̂

(j+1)

n (ε), β̂
(j+1)

n (ε)
)

=
(
L̂(j+1)

n , L̂(j+1)
n

)

+ ε2
(
q̂(j+1)

n , q̂(j+1)
n

)
− 2 ε2

j∑
�=1

L̂(�)
n �=0

(
q̂(j+1)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

) (L̂(j+1)
n , L̂(�)

n

)
+ O

(
ε4
)

=
(
L̂(j+1)

n , L̂(j+1)
n

)
+ ε2

(
q̂(j+1)

n , q̂(j+1)
n

)
+ O

(
ε4
)

as ε → 0,

by virtue of Lemma A.1. It follows that

(A.6) µ(i,j+1)
n (ε) =

(
Ln−i+1(ε), β̂

(j+1)

n (ε)
)

(
β̂

(j+1)

n (ε), β̂
(j+1)

n (ε)
)

=

(
Ln−i+1, L̂

(j+1)
n

)
+ ε2

(
qn−i+1 −

∑j
�=1 ν

(i,�)
n q̂(�)

n , q̂(j+1)
n

)
+ O(ε4)(

L̂(j+1)
n , L̂(j+1)

n

)
+ ε2

(
q̂(j+1)

n , q̂(j+1)
n

)
+ O(ε4)

as ε → 0.
We need to consider the cases

(a) L̂(j+1)
n �= 0 and (b) L̂(j+1)

n = 0

separately. Suppose that (a) holds. Then equation (A.6) leads to

µ(i,j+1)
n (ε) =

(
Ln−i+1, L̂

(j+1)
n

)
+ ε2

(
qn−i+1 −

∑j
�=1 ν

(i,�)
n q̂(�)

n , q̂(j+1)
n

)
+ O(ε4)(

L̂(j+1)
n , L̂(j+1)

n

)

×

⎛
⎝1 − ε2

(
q̂(j+1)

n , q̂(j+1)
n

)
(
L̂(j+1)

n , L̂(j+1)
n

) + O
(
ε4
)⎞⎠
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and so

(A.7) µ(i,j+1)
n (ε) = ν(i,j+1)

n + ε2

(
qn−i+1 −

∑j+1
�=1 ν

(i,�)
n q̂(�)

n , q̂(j+1)
n

)
(
L̂(j+1)

n , L̂(j+1)
n

) + O
(
ε4
)

as ε → 0. Combining this with equation (A.5), we deduce that

(A.8) µ(i,j+1)
n (ε)β̂

(j+1)

n (ε) = ν(i,j+1)
n

(
L̂(j+1)

n

εq̂(j+1)
n

)

− ν(i,j+1)
n ε2

j∑
�=1

L̂(�)
n �=0

(
q̂(j+1)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

)
(

L̂(�)
n

εq̂(�)
n

)

+ ε2

(
qn−i+1 −

∑j+1
�=1 ν

(i,�)
n q̂(�)

n , q̂(j+1)
n

)
(
L̂(j+1)

n , L̂(j+1)
n

)
(

L̂(j+1)
n

εq̂(j+1)
n

)
+
(

Ok

(
ε4
)

Ok′
(
ε3
)) as ε → 0 .

Now,

Ln−i+1(ε) −
j+1∑
�=1

µ(i,�)
n (ε)β̂

(�)

n (ε)

= Ln−i+1(ε) −
j∑

�=1

µ(i,�)
n (ε)β̂

(�)

n (ε) − µ(i,j+1)
n (ε)β̂

(j+1)

n (ε)

=

(
Ln−i+1 −

∑j
�=1 ν

(i,�)
n L̂(�)

n

ε
(
qn−i+1 −

∑j
�=1 ν

(i,�)
n q̂(�)

n

))

− ε2

j∑
�=1

L̂(�)
n �=0

(
qn−i+1 −

∑j
m=1 ν

(i,m)
n q̂(m)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

)
(

L̂(�)
n

εq̂(�)
n

)

− µ(i,j+1)
n (ε)β̂

(j+1)

n (ε) +
(

Ok(ε4)
Ok′(ε3)

)
as ε → 0,

by the induction hypothesis. So, by equation (A.8), this yields

Ln−i+1(ε) −
j+1∑
�=1

µ(i,�)
n (ε)β̂

(�)

n (ε)

=

(
Ln−i+1 −

∑j+1
�=1 ν

(i,�)
n L̂(�)

n

ε
(
qn−i+1 −

∑j+1
�=1 ν

(i,�)
n q̂(�)

n

))

−ε2

j+1∑
�=1

L̂(�)
n �=0

(
qn−i+1 −

∑j+1
m=1 ν

(i,m)
n q̂(m)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

)
(

L̂(�)
n

εq̂(�)
n

)
+
(

Ok(ε4)
Ok′(ε3)

)
as ε → 0 .

This is equation (A.4) with j replaced by j + 1, and so we have finished with the
case where L(j+1)

n �= 0.
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It remains to consider the case where L(j+1)
n = 0. In this case, equation (A.6)

gives

(A.9) µ(i,j+1)
n (ε) = ν(i,j+1)

n + O(ε2) as ε → 0 .

Combining this with equation (A.5), we obtain

(A.10) µ(i,j+1)
n (ε)β̂

(j+1)

n (ε) = ν(i,j+1)
n

(
L̂(j+1)

n

εq̂(j+1)
n

)

− ν(i,j+1)
n ε2

j∑
�=1

L̂(�)
n �=0

(
q̂(j+1)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

)
(

L̂(�)
n

εq̂(�)
n

)
+
(

Ok

(
ε4
)

Ok′
(
ε3
)) as ε → 0,

since L̂(j+1)
n = 0. The induction hypothesis then gives

Ln−i+1(ε) −
j+1∑
�=1

µ(i,�)
n (ε)β̂

(�)

n (ε) =

(
Ln−i+1 −

∑j
�=1 ν

(i,�)
n L̂(�)

n

ε
(
qn−i+1 −

∑j
�=1 ν

(i,�)
n q̂(�)

n

))

− ε2

j∑
�=1

L̂(�)
n �=0

(
qn−i+1 −

∑j
m=1 ν

(i,m)
n q̂(m)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

)
(

L̂(�)
n

εq̂(�)
n

)

− µ(i,j+1)
n (ε)β̂

(j+1)

n (ε) +
(

Ok(ε4)
Ok′(ε3)

)
=

(
Ln−i+1 −

∑j+1
�=1 ν

(i,�)
n L̂(�)

n

ε
(
qn−i+1 −

∑j+1
�=1 ν

(i,�)
n q̂(�)

n

))

− ε2

j∑
�=1

L̂(�)
n �=0

(
qn−i+1 −

∑j+1
m=1 ν

(i,m)
n q̂(m)

n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
n

)
(

L̂(�)
n

εq̂(�)
n

)
+
(

Ok(ε4)
Ok′(ε3)

)

=

(
Ln−i+1 −

∑j+1
�=1 ν

(i,�)
n L̂(�)

n

ε
(
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∑j+1
�=1 ν

(i,�)
n q̂(�)
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j+1∑
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(
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n , q̂(�)
n

)
(
L̂(�)

n , L̂(�)
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)
(

L̂(�)
n

εq̂(�)
n

)
+
(
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)

as ε → 0, since L̂(j+1)
n = 0. This is, again, equation (A.4) with j replaced by

j + 1, and thus we have shown by induction that equation (A.4) holds for every
1 ≤ j ≤ dn. The proof of the theorem follows easily from equations (A.3), (A.5),
(A.7) and (A.9).
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