Constraint preserving implicit finite element discretization of harmonic map flow into spheres
HTML articles powered by AMS MathViewer
- by Sören Bartels and Andreas Prohl;
- Math. Comp. 76 (2007), 1847-1859
- DOI: https://doi.org/10.1090/S0025-5718-07-02026-1
- Published electronically: May 24, 2007
- PDF | Request permission
Abstract:
Discretization of the harmonic map flow into spheres often uses a penalization or projection strategy, where the first suffers from the proper choice of an additional parameter, and the latter from the lack of a discrete energy law, and restrictive mesh-constraints. We propose an implicit scheme that preserves the sphere constraint at every node, enjoys a discrete energy law, and unconditionally converges to weak solutions of the harmonic map heat flow.References
- François Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case, SIAM J. Numer. Anal. 34 (1997), no. 5, 1708–1726. MR 1472192, DOI 10.1137/S0036142994264249
- François Alouges and Pascal Jaisson, Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism, Math. Models Methods Appl. Sci. 16 (2006), no. 2, 299–316. MR 2210092, DOI 10.1142/S0218202506001169
- Sören Bartels, Stability and convergence of finite-element approximation schemes for harmonic maps, SIAM J. Numer. Anal. 43 (2005), no. 1, 220–238. MR 2177142, DOI 10.1137/040606594
- Sören Bartels and Andreas Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal. 44 (2006), no. 4, 1405–1419. MR 2257110, DOI 10.1137/050631070
- J. W. Barrett, S. Bartels, X. Feng, A. Prohl, A convergent and constraint-preserving finite element method for the $p$-harmonic flow into spheres, SIAM J. Num. Anal. (accepted).
- Kung-Ching Chang, Wei Yue Ding, and Rugang Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom. 36 (1992), no. 2, 507–515. MR 1180392
- Yun Mei Chen, The weak solutions to the evolution problems of harmonic maps, Math. Z. 201 (1989), no. 1, 69–74. MR 990189, DOI 10.1007/BF01161995
- Yun Mei Chen and Michael Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), no. 1, 83–103. MR 990191, DOI 10.1007/BF01161997
- Ivan Cimrák, Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field, IMA J. Numer. Anal. 25 (2005), no. 3, 611–634. MR 2153750, DOI 10.1093/imanum/dri011
- Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics, vol. 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1034481, DOI 10.1090/cbms/074
- Alexandre Freire, Uniqueness for the harmonic map flow in two dimensions, Calc. Var. Partial Differential Equations 3 (1995), no. 1, 95–105. MR 1384838, DOI 10.1007/BF01190893
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Bo Ling Guo and Min Chun Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calc. Var. Partial Differential Equations 1 (1993), no. 3, 311–334. MR 1261548, DOI 10.1007/BF01191298
- M. Kružík, A. Prohl, Recent Developments in Modeling, Analysis and Numerics of Ferromagnetism, SIAM Review 48, pp. 439–483 (2006).
- San Yih Lin and Mitchell Luskin, Relaxation methods for liquid crystal problems, SIAM J. Numer. Anal. 26 (1989), no. 6, 1310–1324. MR 1025090, DOI 10.1137/0726076
- Andreas Prohl, Computational micromagnetism, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 2001. MR 1885923, DOI 10.1007/978-3-663-09498-2
- Michael Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), no. 4, 558–581. MR 826871, DOI 10.1007/BF02567432
- Michael Struwe, Geometric evolution problems, Nonlinear partial differential equations in differential geometry (Park City, UT, 1992) IAS/Park City Math. Ser., vol. 2, Amer. Math. Soc., Providence, RI, 1996, pp. 257–339. MR 1369591, DOI 10.1090/pcms/002/07
Bibliographic Information
- Sören Bartels
- Affiliation: Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
- Email: sba@math.hu-berlin.de
- Andreas Prohl
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
- Email: prohl@na.uni-tuebingen.de
- Received by editor(s): October 10, 2005
- Received by editor(s) in revised form: September 11, 2006
- Published electronically: May 24, 2007
- Additional Notes: Supported by “Deutsche Forschungsgemeinschaft” through the DFG Research Center Matheon “Mathematics for key technologies” in Berlin
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 1847-1859
- MSC (2000): Primary 65M12, 65M60, 35K55, 35Q35
- DOI: https://doi.org/10.1090/S0025-5718-07-02026-1
- MathSciNet review: 2336271