Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov–Poisson system
HTML articles powered by AMS MathViewer
- by Nicolas Besse and Michel Mehrenberger;
- Math. Comp. 77 (2008), 93-123
- DOI: https://doi.org/10.1090/S0025-5718-07-01912-6
- Published electronically: June 18, 2007
- PDF | Request permission
Abstract:
In this paper we present some classes of high-order semi-Lagran- gian schemes for solving the periodic one-dimensional Vlasov-Poisson system in phase-space on uniform grids. We prove that the distribution function $f(t,x,v)$ and the electric field $E(t,x)$ converge in the $L^2$ norm with a rate of \[ \mathcal {O}\left (\Delta t^2 +h^{m+1}+ \frac {h^{m+1}}{\Delta t}\right ),\] where $m$ is the degree of the polynomial reconstruction, and $\Delta t$ and $h$ are respectively the time and the phase-space discretization parameters.References
- B. J. C. Baxter and N. Sivakumar, On shifted cardinal interpolation by Gaussians and multiquadrics, J. Approx. Theory 87 (1996), no. 1, 36–59. MR 1410611, DOI 10.1006/jath.1996.0091
- M. L. Begue, A. Ghizzo, P. Bertrand, Two-dimensional Vlasov simulation of Raman scattering and plasma beatwave acceleration on parallel computers, J. Comput. Phys., 151 (1999), 458-478.
- Rodolfo Bermejo, Analysis of an algorithm for the Galerkin-characteristic method, Numer. Math. 60 (1991), no. 2, 163–194. MR 1133578, DOI 10.1007/BF01385720
- Rodolfo Bermejo, Analysis of a class of quasi-monotone and conservative semi-Lagrangian advection schemes, Numer. Math. 87 (2001), no. 4, 597–623. MR 1815727, DOI 10.1007/PL00005425
- N. Besse, Etude mathématique et numérique de l’équation de Vlasov non linéaire sur des maillages non structurés de l’espace des phases Ph.D. thesis of Institut de Recherche Mathématique Avancée, IRMA, Université Louis Pasteur, Strasbourg, 2003.
- Nicolas Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system, SIAM J. Numer. Anal. 42 (2004), no. 1, 350–382. MR 2051070, DOI 10.1137/S0036142902410775
- N. Besse, Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the Vlasov-Poisson system, submitted.
- N. Besse and E. Sonnendrücker, Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space, J. Comput. Phys. 191 (2003), no. 2, 341–376. MR 2016914, DOI 10.1016/S0021-9991(03)00318-8
- N. Besse, F. Filbet, M. Gutnic, I. Paun, E. Sonnendrücker, Adaptive numerical method for the Vlasov equation based on a multiresolution analysis, In F. Brezzi, A. Buffa, S. Escorsaro, and A. Murli editors, Numerical Mathematics and Advanced Applications ENUMATH 01, 437-446, Springer 2001.
- François Bouchut, François Golse, and Mario Pulvirenti, Kinetic equations and asymptotic theory, Series in Applied Mathematics (Paris), vol. 4, Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 2000. Edited and with a foreword by Benoît Perthame and Laurent Desvillettes. MR 2065070
- Carl de Boor, On the cardinal spline interpolant to $e^{iut}$, SIAM J. Math. Anal. 7 (1976), no. 6, 930–941. MR 493056, DOI 10.1137/0507073
- M. Campos Pinto, M. Mehrenberger, Convergence of an adaptive scheme for the one-dimensional Vlasov-Poisson system, submitted.
- C. Z. Cheng, G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22 (1976), 330-351.
- Maurizio Falcone and Roberto Ferretti, Convergence analysis for a class of high-order semi-Lagrangian advection schemes, SIAM J. Numer. Anal. 35 (1998), no. 3, 909–940. MR 1619910, DOI 10.1137/S0036142994273513
- Francis Filbet, Eric Sonnendrücker, and Pierre Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys. 172 (2001), no. 1, 166–187. MR 1852326, DOI 10.1006/jcph.2001.6818
- Etienne Forest, Johan Bengtsson, and Michael F. Reusch, Application of the Yoshida-Ruth techniques to implicit integration and multi-map explicit integration, Phys. Lett. A 158 (1991), no. 3-4, 99–101. MR 1124345, DOI 10.1016/0375-9601(91)90907-P
- Daniel Goldman and Tasso J. Kaper, $N$th-order operator splitting schemes and nonreversible systems, SIAM J. Numer. Anal. 33 (1996), no. 1, 349–367. MR 1377257, DOI 10.1137/0733018
- Robert T. Glassey, The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1379589, DOI 10.1137/1.9781611971477
- H. Hong, S. Steinberg, Accuracy and stability of polynomial interpolation schemes for advection equations, preprint, 2001.
- P. G. Ciarlet and J.-L. Lions (eds.), Handbook of numerical analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991. Finite element methods. Part 1. MR 1115235
- K. Jetter, S. D. Riemenschneider, and N. Sivakumar, Schoenberg’s exponential Euler spline curves, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), no. 1-2, 21–33. MR 1113840, DOI 10.1017/S0308210500028869
- F. J. Narcowich, N. Sivakumar, and J. D. Ward, Stability results for scattered-data interpolation on Euclidean spheres, Adv. Comput. Math. 8 (1998), no. 3, 137–163. MR 1628253, DOI 10.1023/A:1018996230401
- I. J. Schoenberg, Cardinal interpolation and spline functions, J. Approximation Theory 2 (1969), 167–206. MR 257616, DOI 10.1016/0021-9045(69)90040-9
- Eric Sonnendrücker, Jean Roche, Pierre Bertrand, and Alain Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys. 149 (1999), no. 2, 201–220. MR 1672731, DOI 10.1006/jcph.1998.6148
- A. Staniforth, J. Cote, Semi-Lagrangian integration schemes for atmospheric models-a review, Monthly Weather Review, 119 (1991), 2206-2223.
- G. Strang, Trigonometric polynomials and difference methods of maximum accuracy, J. Math. Phys, 41(2) (1962), 147-154.
- Haruo Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150 (1990), no. 5-7, 262–268. MR 1078768, DOI 10.1016/0375-9601(90)90092-3
Bibliographic Information
- Nicolas Besse
- Affiliation: Institut de Recherche Mathematique Avancée, Université Louis Pasteur - CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France
- Address at time of publication: IECN UMR CNRS 7502 and LPMIA UMR CNRS 7040, Université Henri Poincaré Nancy I, Boulevard des Aiguillettes, B.P. 239 F-54506, Vandoeuvre-lès-Nancy, Cedex, France
- Email: besse@iecn.u-nancy.fr
- Michel Mehrenberger
- Affiliation: Institut de Recherche Mathematique Avancée, Université Louis Pasteur - CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France
- Email: mehrenbe@math.u-strasbg.fr
- Received by editor(s): March 29, 2005
- Received by editor(s) in revised form: May 25, 2005
- Published electronically: June 18, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 77 (2008), 93-123
- MSC (2000): Primary 65M12
- DOI: https://doi.org/10.1090/S0025-5718-07-01912-6
- MathSciNet review: 2353945