Construction of hyperelliptic function fields of high three-rank
HTML articles powered by AMS MathViewer
- by M. Bauer, M. J. Jacobson Jr., Y. Lee and R. Scheidler;
- Math. Comp. 77 (2008), 503-530
- DOI: https://doi.org/10.1090/S0025-5718-07-02001-7
- Published electronically: July 26, 2007
- PDF | Request permission
Abstract:
We present several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large $3$-rank. Our focus is on finding examples for which the genus and the base field are as small as possible. Most of our methods are adapted from analogous techniques used for generating quadratic number fields whose ideal class groups have high $3$-rank, but one method, applicable to finding large $l$-ranks for odd primes $l \geq 3,$ is new and unique to function fields. Algorithms, examples, and numerical data are included.References
- Jeffrey D. Achter, The distribution of class groups of function fields, J. Pure Appl. Algebra 204 (2006), no. 2, 316–333. MR 2184814, DOI 10.1016/j.jpaa.2005.04.003
- E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. I, Math. Z. 19 (1924), no. 1, 153–206 (German). MR 1544651, DOI 10.1007/BF01181074
- M. L. Bauer, M. J. Jacobson, Jr., Y. Lee and R. Scheidler, Construction of Hyperelliptic Function Fields of High Three-Rank. University of Calgary Yellow Series 849. Available at www.math.ucalgary.ca/files/publications/3443849.pdf.
- Karim Belabas, On quadratic fields with large 3-rank, Math. Comp. 73 (2004), no. 248, 2061–2074. MR 2059751, DOI 10.1090/S0025-5718-04-01632-1
- Johannes Buchmann, Michael J. Jacobson Jr., and Edlyn Teske, On some computational problems in finite abelian groups, Math. Comp. 66 (1997), no. 220, 1663–1687. MR 1432126, DOI 10.1090/S0025-5718-97-00880-6
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI 10.1007/BFb0099440
- Maurice Craig, A type of class group for imaginary quadratic fields, Acta Arith. 22 (1973), 449–459. (errata insert). MR 318098, DOI 10.4064/aa-22-4-449-459
- Maurice Craig, A construction for irregular discriminants, Osaka Math. J. 14 (1977), no. 2, 365–402. MR 450226
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405–420. MR 491593, DOI 10.1098/rspa.1971.0075
- F. Diaz y Diaz, On some families of imaginary quadratic fields, Math. Comp. 32 (1978), no. 142, 637–650. MR 485775, DOI 10.1090/S0025-5718-1978-0485775-4
- F. Diaz y Diaz, Daniel Shanks, and H. C. Williams, Quadratic fields with $3$-rank equal to $4$, Math. Comp. 33 (1979), no. 146, 836–840. MR 521299, DOI 10.1090/S0025-5718-1979-0521299-4
- G. W.-W. Fung, Computational Problems in Complex Cubic Fields. Doctoral Dissertation, University of Manitoba, 1990.
- Eduardo Friedman and Lawrence C. Washington, On the distribution of divisor class groups of curves over a finite field, Théorie des nombres (Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 227–239. MR 1024565
- Helmut Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z. 31 (1930), no. 1, 565–582 (German). MR 1545136, DOI 10.1007/BF01246435
- Everett W. Howe, Franck Leprévost, and Bjorn Poonen, Large torsion subgroups of split Jacobians of curves of genus two or three, Forum Math. 12 (2000), no. 3, 315–364. MR 1748483, DOI 10.1515/form.2000.008
- Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original. MR 600654
- Yoonjin Lee, Cohen-Lenstra heuristics and the Spiegelungssatz; function fields, J. Number Theory 106 (2004), no. 2, 187–199. MR 2059070, DOI 10.1016/j.jnt.2004.01.001
- Yoonjin Lee, Cohen-Lenstra heuristics and the Spiegelungssatz; function fields, J. Number Theory 106 (2004), no. 2, 187–199. MR 2059070, DOI 10.1016/j.jnt.2004.01.001
- Yoonjin Lee and Allison M. Pacelli, Class groups of imaginary function fields: the inert case, Proc. Amer. Math. Soc. 133 (2005), no. 10, 2883–2889. MR 2159765, DOI 10.1090/S0002-9939-05-07910-4
- Pascual Llorente, Cubic fields and class fields of real quadratic fields, Publ. Sec. Mat. Univ. Autònoma Barcelona 26 (1982), no. 2, 93–109 (Spanish). MR 768364
- Pascual Llorente and Jordi Quer, On the $3$-Sylow subgroup of the class group of quadratic fields, Math. Comp. 50 (1988), no. 181, 321–333. MR 917838, DOI 10.1090/S0025-5718-1988-0917838-7
- Jean-François Mestre, Courbes elliptiques et groupes de classes d’idéaux de certains corps quadratiques, J. Reine Angew. Math. 343 (1983), 23–35 (French). MR 705875, DOI 10.1515/crll.1983.343.23
- J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 103–150. MR 861974
- L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 249355
- Allison M. Pacelli, Abelian subgroups of any order in class groups of global function fields, J. Number Theory 106 (2004), no. 1, 26–49. MR 2029780, DOI 10.1016/j.jnt.2003.12.003
- Darren Glass and Rachel Pries, Hyperelliptic curves with prescribed $p$-torsion, Manuscripta Math. 117 (2005), no. 3, 299–317. MR 2154252, DOI 10.1007/s00229-005-0559-0
- Jordi Quer, Corps quadratiques de $3$-rang $6$ et courbes elliptiques de rang $12$, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 6, 215–218 (French, with English summary). MR 907945
- Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657, DOI 10.1007/978-1-4757-6046-0
- A. Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166 (1932), 201-203.
- Daniel Shanks, New types of quadratic fields having three invariants divisible by $3$, J. Number Theory 4 (1972), 537–556. MR 313220, DOI 10.1016/0022-314X(72)90027-3
- Daniel Shanks, Class groups of the quadratic fields found by F. Diaz y Diaz, Math. Comp. 30 (1976), no. 133, 173–178. MR 399039, DOI 10.1090/S0025-5718-1976-0399039-9
- D. Shanks, Determining all cubic fields having a given fundamental discriminant. Unpublished manuscript.
- Daniel Shanks and Richard Serafin, Quadratic fields with four invariants divisible by $3$, Math. Comp. 27 (1973), 183–187. MR 330097, DOI 10.1090/S0025-5718-1973-0330097-0
- Daniel Shanks and Peter Weinberger, A quadratic field of prime discriminant requiring three generators for its class group, and related theory, Acta Arith. 21 (1972), 71–87. MR 309899, DOI 10.4064/aa-21-1-71-87
- V. Shoup, NTL: A library for doing number theory. Software, 2001. Available from http://www.shoup.net/ntl.
- Andreas Stein and Edlyn Teske, Explicit bounds and heuristics on class numbers in hyperelliptic function fields, Math. Comp. 71 (2002), no. 238, 837–861. MR 1885633, DOI 10.1090/S0025-5718-01-01385-0
- André Weil, Variétés abéliennes et courbes algébriques, Publications de l’Institut de Mathématiques de l’Université de Strasbourg [Publications of the Mathematical Institute of the University of Strasbourg], vol. 8, Hermann & Cie, Paris, 1948 (French). Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1064. MR 29522
- Yoshihiko Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka Math. J. 7 (1970), 57–76. MR 266898
- Noriko Yui, On the Jacobian varieties of hyperelliptic curves over fields of characteristic $p>2$, J. Algebra 52 (1978), no. 2, 378–410. MR 491717, DOI 10.1016/0021-8693(78)90247-8
- Xian Ke Zhang, Algebraic function fields of type $(2,2,\cdots ,2)$, Sci. Sinica Ser. A 31 (1988), no. 5, 521–530. MR 962269
Bibliographic Information
- M. Bauer
- Affiliation: Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
- Email: mbauer@math.ucalgary.ca
- M. J. Jacobson Jr.
- Affiliation: Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
- Email: jacobs@cpsc.ucalgary.ca
- Y. Lee
- Affiliation: Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- MR Author ID: 689346
- ORCID: 0000-0001-9510-3691
- Email: yoonjinl@sfu.ca
- R. Scheidler
- Affiliation: Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
- MR Author ID: 308756
- ORCID: 0000-0001-7164-8769
- Email: rscheidl@math.ucalgary.ca
- Received by editor(s): July 26, 2005
- Received by editor(s) in revised form: November 8, 2006
- Published electronically: July 26, 2007
- Additional Notes: The first, second, and fourth authors were supported by NSERC of Canada
The third author was supported by an AWM-NSF Mentoring Grant - © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 77 (2008), 503-530
- MSC (2000): Primary 11R11; Secondary 11R65, 11Y16, 11Y40, 14H05, 14H40
- DOI: https://doi.org/10.1090/S0025-5718-07-02001-7
- MathSciNet review: 2353964