Explicit values of multi-dimensional Kloosterman sums for prime powers, II
HTML articles powered by AMS MathViewer
- by S. Gurak;
- Math. Comp. 77 (2008), 475-493
- DOI: https://doi.org/10.1090/S0025-5718-07-02011-X
- Published electronically: May 14, 2007
- PDF | Request permission
Abstract:
For any integer $m>1$ fix $\zeta _{m}=\textrm {exp}(2 \pi i/m)$, and let $\textbf {Z}_{m}^{*}$ denote the group of reduced residues modulo $m$. Let $q=p^{\alpha }$, a power of a prime $p$. The hyper-Kloosterman sums of dimension $n>0$ are defined for $q$ by \[ \displaylines { R(d,q)= \sum _{x_{1}, ..., x_{n} \in Z_{q}^{*}} \zeta _{q}^{x_{1}+ \cdots +x_{n} +d(x_{1} \cdots x_{n})^{-1}} \;\;\;\;\;\; (d \in \textbf {Z}_{q}^{*}), }\] where $x^{-1}$ denotes the multiplicative inverse of $x$ modulo $q$. Salie evaluated $R(d,q)$ in the classical setting $n=1$ for even $q$, and for odd $q=p^{\alpha }$ with $\alpha >1$. Later, Smith provided formulas that simplified the computation of $R(d,q)$ in these cases for $n>1$. Recently, Cochrane, Liu and Zheng computed upper bounds for $R(d,q)$ in the general case $n >0$, stopping short of their explicit evaluation. Here I complete the computation they initiated to obtain explicit values for the Kloosterman sums for $\alpha >1$, relying on basic properties of some simple specialized exponential sums. The treatment here is more elementary than the author’s previous determination of these Kloosterman sums using character theory and $p$-adic methods. At the least, it provides an alternative, independent evaluation of the Kloosterman sums.References
- Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1625181
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 195803
- J. Bourgain, “Exponential sum estimates on subgroups of $\textbf {Z}_{q}^{*}$, $q$ arbitrary,” J. Analyse Math. 97 (2005), 317-355.
- J. Bourgain and M.-C. Chang, Exponential sum estimates over subgroups and almost subgroups of $\Bbb Z_Q^*$, where $Q$ is composite with few prime factors, Geom. Funct. Anal. 16 (2006), no. 2, 327–366. MR 2231466, DOI 10.1007/s00039-006-0558-7
- Todd Cochrane and Zhiyong Zheng, Pure and mixed exponential sums, Acta Arith. 91 (1999), no. 3, 249–278. MR 1735676, DOI 10.4064/aa-91-3-249-278
- Todd Cochrane, Ming-Chit Liu, and Zhiyong Zheng, Upper bounds on $n$-dimensional Kloosterman sums, J. Number Theory 106 (2004), no. 2, 259–274. MR 2059074, DOI 10.1016/j.jnt.2003.09.011
- P. Deligne, “Applications de la formula des traces aux sommes trigonometriques” in Cohomologie etale (SGA 4.5), 168-232, Lecture Notes in Math. 569, Springer-Verlag, Berlin (1977).
- W. Duke, On multiple Salié sums, Proc. Amer. Math. Soc. 114 (1992), no. 3, 623–625. MR 1077785, DOI 10.1090/S0002-9939-1992-1077785-2
- Ronald Evans, Twisted hyper-Kloosterman sums over finite rings of integers, Number theory for the millennium, I (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 429–448. MR 1956239
- S. Gurak, Minimal polynomials for Gauss periods with $f=2$, Acta Arith. 121 (2006), no. 3, 233–257. MR 2218343, DOI 10.4064/aa121-3-3
- S. Gurak, On the minimal polynomial of Gauss periods for prime powers, Math. Comp. 75 (2006), no. 256, 2021–2035. MR 2240647, DOI 10.1090/S0025-5718-06-01885-0
- S. Gurak, “Explicit values of multi-dimensional Kloosterman sums for prime powers, I” (to appear)
- S. Gurak, “Polynomials for Hyper-Kloosterman sums” (to appear)
- D. R. Heath-Brown and S. Konyagin, New bounds for Gauss sums derived from $k\textrm {th}$ powers, and for Heilbronn’s exponential sum, Q. J. Math. 51 (2000), no. 2, 221–235. MR 1765792, DOI 10.1093/qjmath/51.2.221
- Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964, DOI 10.1090/gsm/017
- H.D. Kloosterman, “On the representation of a number in the form $ax^{2} +by^{2} + cz^{2} + dt^{2}$”, Acta Math. 49 (1926), 407-464.
- Hans Salié, Über die Kloostermanschen Summen $S(u,v;q)$, Math. Z. 34 (1932), no. 1, 91–109 (German). MR 1545243, DOI 10.1007/BF01180579
- Robert A. Smith, On $n$-dimensional Kloosterman sums, J. Number Theory 11 (1979), no. 3, S. Chowla Anniversary Issue, 324–343. MR 544261, DOI 10.1016/0022-314X(79)90006-4
Bibliographic Information
- S. Gurak
- Affiliation: Department of Mathematics, University of San Diego, San Diego, California 92110
- Received by editor(s): May 10, 2006
- Received by editor(s) in revised form: November 8, 2006
- Published electronically: May 14, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 77 (2008), 475-493
- MSC (2000): Primary 11L05, 11T24
- DOI: https://doi.org/10.1090/S0025-5718-07-02011-X
- MathSciNet review: 2353962
Dedicated: In memory of Derick H. Lehmer