Modified Taylor reproducing formulas and h-p clouds
HTML articles powered by AMS MathViewer
- by Carlos Zuppa;
- Math. Comp. 77 (2008), 243-264
- DOI: https://doi.org/10.1090/S0025-5718-07-02041-8
- Published electronically: July 26, 2007
- PDF | Request permission
Abstract:
We study two different approximations of a multivariate function $f$ by operators of the form $\sum _{i=1}^{N}\mathcal {T}_{r}[f,x_{i}](x) \mathcal {W} _{i}(x)$, where $\{\mathcal {W}_{i}\}$ is an $m$-reproducing partition of unity and $\mathcal {T}_{r}[f,x_{i}](x)$ are modified Taylor polynomials of degree $r$ expanded at $x_{i}$. The first approximation was introduced by Xuli (2003) in the univariate case and generalized for convex domains by Guessab et al. (2005). The second one was introduced by Duarte (1995) and proved in the univariate case. In this paper, we first relax the Guessab’s convexity assumption and we prove Duarte’s reproduction formula in the multivariate case. Then, we introduce two related reproducing quasi-interpolation operators in Sobolev spaces. A weighted error estimate and Jackson’s type inequalities for h-p cloud function spaces are obtained. Last, numerical examples are analyzed to show the approximative power of the method.References
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- C. A. M. Duarte, H-p Clouds—an h-p Meshless Method, Ph.D. Thesis, TICAM, The University of Texas at Austin, 1995.
- C. A. M. Duarte and J. T. Oden, Hp clouds—an hp meshless method to solve boundary value problems, Technical Report 59-05, TICAM, The University of Texas at Austin, 1995.
- C. Armando Duarte and J. Tinsley Oden, $H$-$p$ clouds—an $h$-$p$ meshless method, Numer. Methods Partial Differential Equations 12 (1996), no. 6, 673–705. MR 1419770, DOI 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
- Ricardo G. Durán, On polynomial approximation in Sobolev spaces, SIAM J. Numer. Anal. 20 (1983), no. 5, 985–988. MR 714693, DOI 10.1137/0720068
- Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441–463. MR 559195, DOI 10.1090/S0025-5718-1980-0559195-7
- M. Griebel and M. A. Schweitzer, A particle-partition of unity method. V. Boundary conditions, Geometric analysis and nonlinear partial differential equations, Springer, Berlin, 2003, pp. 519–542. MR 2008354
- Allal Guessab, Otheman Nouisser, and Gerhard Schmeisser, Multivariate approximation by a combination of modified Taylor polynomials, J. Comput. Appl. Math. 196 (2006), no. 1, 162–179. MR 2241582, DOI 10.1016/j.cam.2005.08.015
- Sergio R. Idelsohn, Eugenio Oñate, Nestor Calvo, and Facundo Del Pin, The meshless finite element method, Internat. J. Numer. Methods Engrg. 58 (2003), no. 6, 893–912. MR 2010710, DOI 10.1002/nme.798
- J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971), 9–15 (German). MR 341903, DOI 10.1007/BF02995904
- J. T. Oden, C. A. M. Duarte, and O. C. Zienkiewicz, A new cloud-based $hp$ finite element method, Comput. Methods Appl. Mech. Engrg. 153 (1998), no. 1-2, 117–126. MR 1606117, DOI 10.1016/S0045-7825(97)00039-X
- T. Strouboulis, I. Babuška, and K. Copps, The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg. 181 (2000), no. 1-3, 43–69. MR 1734667, DOI 10.1016/S0045-7825(99)00072-9
- Rüdiger Verfürth, Error estimates for some quasi-interpolation operators, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 695–713 (English, with English and French summaries). MR 1726480, DOI 10.1051/m2an:1999158
- Rüdiger Verfürth, A note on polynomial approximation in Sobolev spaces, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 715–719 (English, with English and French summaries). MR 1726481, DOI 10.1051/m2an:1999159
- Han Xuli, Multi-node higher order expansions of a function, J. Approx. Theory 124 (2003), no. 2, 242–253. MR 2016674, DOI 10.1016/j.jat.2003.08.001
- Carlos Zuppa, Jackson-type inequalities for $h$-$p$ clouds and error estimates, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 17, 1875–1887. MR 2121320, DOI 10.1016/j.cma.2004.06.026
Bibliographic Information
- Carlos Zuppa
- Affiliation: Departamento de Matemáticas, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Email: zuppa@unsl.edu.ar
- Received by editor(s): August 9, 2005
- Received by editor(s) in revised form: October 24, 2006
- Published electronically: July 26, 2007
- Additional Notes: Partially supported by CyT-FCFMN-UNSL Grant 22/F330. The author wishes to thank the anonymous reviewers for their valuable suggestions.
- © Copyright 2007 American Mathematical Society
- Journal: Math. Comp. 77 (2008), 243-264
- MSC (2000): Primary 41A17, 41A10; Secondary 65N15, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-07-02041-8
- MathSciNet review: 2353952