The Abel Lemma and the $q$-Gosper Algorithm
HTML articles powered by AMS MathViewer
- by Vincent Y. B. Chen, William Y. C. Chen and Nancy S. S. Gu;
- Math. Comp. 77 (2008), 1057-1074
- DOI: https://doi.org/10.1090/S0025-5718-07-01968-0
- Published electronically: October 24, 2007
- PDF | Request permission
Abstract:
Chu has recently shown that the Abel lemma on summation by parts reveals the telescoping nature of Bailey’s ${}_6\psi _6$ bilateral summation formula. We present a systematic approach to compute Abel pairs for bilateral and unilateral basic hypergeometric summation formulas by using the $q$-Gosper algorithm. It is demonstrated that Abel pairs can be derived from Gosper pairs. This approach applies to many classical summation formulas.References
- Sergei A. Abramov, Peter Paule, and Marko Petkovšek, $q$-hypergeometric solutions of $q$-difference equations, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995), 1998, pp. 3–22. MR 1603685, DOI 10.1016/S0012-365X(97)00106-4
- George E. Andrews, On Ramanujan’s summation of $_{1}\psi _{1}(a;\,b;\,z)$, Proc. Amer. Math. Soc. 22 (1969), 552–553. MR 241703, DOI 10.1090/S0002-9939-1969-0241703-4
- George E. Andrews, On a transformation of bilateral series with applications, Proc. Amer. Math. Soc. 25 (1970), 554–558. MR 257413, DOI 10.1090/S0002-9939-1970-0257413-1
- George E. Andrews and Richard Askey, A simple proof of Ramanujan’s summation of the $_{1}\psi _{1}$, Aequationes Math. 18 (1978), no. 3, 333–337. MR 522519, DOI 10.1007/BF03031684
- W. N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. (Oxford) 7 (1936), 105–115.
- Bruce C. Berndt, Ramanujan’s theory of theta-functions, Theta functions: from the classical to the modern, CRM Proc. Lecture Notes, vol. 1, Amer. Math. Soc., Providence, RI, 1993, pp. 1–63. MR 1224050, DOI 10.1090/crmp/001/01
- Harald Böing and Wolfram Koepf, Algorithms for $q$-hypergeometric summation in computer algebra, J. Symbolic Comput. 28 (1999), no. 6, 777–799. Orthogonal polynomials and computer algebra. MR 1750546, DOI 10.1006/jsco.1998.0339
- W. Y. C. Chen, Q. H. Hou, and Y. P. Mu, Nonterminating basic hypergeometric series and the $q$-Zeilberger algorithm, arXiv:math.CO/0509281.
- Wenchang Chu, Bailey’s very well-poised ${}_6\psi _6$-series identity, J. Combin. Theory Ser. A 113 (2006), no. 6, 966–979. MR 2244127, DOI 10.1016/j.jcta.2005.08.009
- George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR 2128719, DOI 10.1017/CBO9780511526251
- Wolfgang Hahn, Über Polynome, die gleichzeitig zwei verschiedenen Orthogonalsystemen angehören, Math. Nachr. 2 (1949), 263–278 (German). MR 32858, DOI 10.1002/mana.19490020504
- Mourad E. H. Ismail, A simple proof of Ramanujan’s $_{1}\psi _{1}$ sum, Proc. Amer. Math. Soc. 63 (1977), no. 1, 185–186. MR 508183, DOI 10.1090/S0002-9939-1977-0508183-7
- M. Jackson, On Lerch’s transcendant and the basic bilateral hypergeometric series ${}_2\Psi _2$, J. London Math. Soc. 25 (1950), 189–196. MR 36882, DOI 10.1112/jlms/s1-25.3.189
- Tom H. Koornwinder, On Zeilberger’s algorithm and its $q$-analogue, Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), 1993, pp. 91–111. MR 1246853, DOI 10.1016/0377-0427(93)90317-5
- Mohamud Mohammed and Doron Zeilberger, Sharp upper bounds for the orders of the recurrences output by the Zeilberger and $q$-Zeilberger algorithms, J. Symbolic Comput. 39 (2005), no. 2, 201–207. MR 2169800, DOI 10.1016/j.jsc.2004.10.002
- Peter Paule, Short and easy computer proofs of the Rogers-Ramanujan identities and of identities of similar type, Electron. J. Combin. 1 (1994), Research Paper 10, approx. 9. MR 1293400, DOI 10.37236/1190
- Peter Paule and Markus Schorn, A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities, J. Symbolic Comput. 20 (1995), no. 5-6, 673–698. Symbolic computation in combinatorics $\Delta _1$ (Ithaca, NY, 1993). MR 1395420, DOI 10.1006/jsco.1995.1071
- Axel Riese, A generalization of Gosper’s algorithm to bibasic hypergeometric summation, Electron. J. Combin. 3 (1996), no. 1, Research Paper 19, approx. 16. MR 1394550, DOI 10.37236/1243
- Michael Schlosser, Abel-Rothe type generalizations of Jacobi’s triple product identity, Theory and applications of special functions, Dev. Math., vol. 13, Springer, New York, 2005, pp. 383–400. MR 2132472, DOI 10.1007/0-387-24233-3_{1}7
- Michael Schlosser, Inversion of bilateral basic hypergeometric series, Electron. J. Combin. 10 (2003), Research Paper 10, 27. MR 1975760, DOI 10.37236/1703
- H. S. Shukla, A note on the sums of certain bilateral hypergeometric series, Proc. Cambridge Philos. Soc. 55 (1959), 262–266. MR 104839, DOI 10.1017/s0305004100033995
- Herbert S. Wilf and Doron Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “$q$”) multisum/integral identities, Invent. Math. 108 (1992), no. 3, 575–633. MR 1163239, DOI 10.1007/BF02100618
Bibliographic Information
- Vincent Y. B. Chen
- Affiliation: Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China
- Email: ybchen@mail.nankai.edu.cn
- William Y. C. Chen
- Affiliation: Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China
- MR Author ID: 232802
- Email: chen@nankai.edu.cn
- Nancy S. S. Gu
- Affiliation: Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China
- Email: gu@nankai.edu.cn
- Received by editor(s): July 26, 2006
- Received by editor(s) in revised form: August 2, 2006
- Published electronically: October 24, 2007
- Additional Notes: This work was supported by the 973 Project on Mathematical Mechanization, the Ministry of Education, the Ministry of Science and Technology, and the National Science Foundation of China.
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 77 (2008), 1057-1074
- MSC (2000): Primary 33D15; Secondary 33F10
- DOI: https://doi.org/10.1090/S0025-5718-07-01968-0
- MathSciNet review: 2373192