A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates
HTML articles powered by AMS MathViewer
- by C. Carstensen and Jun Hu;
- Math. Comp. 77 (2008), 611-632
- DOI: https://doi.org/10.1090/S0025-5718-07-02028-5
- Published electronically: October 18, 2007
- PDF | Request permission
Abstract:
This paper establishes a unified a posteriori error estimator for a large class of conforming finite element methods for the Reissner-Mindlin plate problem. The analysis is based on some assumption (H) on the consistency of the reduction integration to avoid shear locking. The reliable and efficient a posteriori error estimator is robust in the sense that the reliability and efficiency constants are independent of the plate thickness $t$. The presented analysis applies to all conforming MITC elements and all conforming finite element methods without reduced integration from the literature.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7–32 (English, with French summary). MR 813687, DOI 10.1051/m2an/1985190100071
- Douglas N. Arnold and Franco Brezzi, Some new elements for the Reissner-Mindlin plate model, Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math., vol. 29, Masson, Paris, 1993, pp. 287–292. MR 1260452
- Douglas N. Arnold and Richard S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal. 26 (1989), no. 6, 1276–1290. MR 1025088, DOI 10.1137/0726074
- Douglas N. Arnold and Richard S. Falk, The boundary layer for the Reissner-Mindlin plate model, SIAM J. Math. Anal. 21 (1990), no. 2, 281–312. MR 1038893, DOI 10.1137/0521016
- Douglas N. Arnold, Daniele Boffi, and Richard S. Falk, Quadrilateral $H(\textrm {div})$ finite elements, SIAM J. Numer. Anal. 42 (2005), no. 6, 2429–2451. MR 2139400, DOI 10.1137/S0036142903431924
- I. Babuška and A. Miller, A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg. 61 (1987), no. 1, 1–40. MR 880421, DOI 10.1016/0045-7825(87)90114-9
- Ivo Babuška and Werner C. Rheinboldt, A posteriori error analysis of finite element solutions for one-dimensional problems, SIAM J. Numer. Anal. 18 (1981), no. 3, 565–589. MR 615532, DOI 10.1137/0718036
- Ivo Babuška and Theofanis Strouboulis, The finite element method and its reliability, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2001. MR 1857191
- K. J. Bathe, F. Brezzi and M. Fortin, A simplified analysis of two-plate elements: The MITC4 and MITC9 element, G.N. Pande and J. Middleton (eds), Numeta 87 Vol. 1, Numerical Techniques for Engineering Analysis and Design,Martinus Nijhoff, Amsterdam.
- Franco Brezzi, Klaus-Jürgen Bathe, and Michel Fortin, Mixed-interpolated elements for Reissner-Mindlin plates, Internat. J. Numer. Methods Engrg. 28 (1989), no. 8, 1787–1801. MR 1008138, DOI 10.1002/nme.1620280806
- K. J. Bathe and E. Dvorkin, A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation, Int. J. Num. Meths. Engrg., 21(1985), pp. 367-383.
- P. Peisker and D. Braess, Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates, RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 5, 557–574 (English, with English and French summaries). MR 1177387, DOI 10.1051/m2an/1992260505571
- Dietrich Braess, Finite elements, Cambridge University Press, Cambridge, 1997. Theory, fast solvers, and applications in solid mechanics; Translated from the 1992 German original by Larry L. Schumaker. MR 1463151, DOI 10.1007/978-3-662-07233-2
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 2nd ed., Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2002. MR 1894376, DOI 10.1007/978-1-4757-3658-8
- F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp. 47 (1986), no. 175, 151–158. MR 842127, DOI 10.1090/S0025-5718-1986-0842127-7
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Franco Brezzi, Michel Fortin, and Rolf Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models Methods Appl. Sci. 1 (1991), no. 2, 125–151. MR 1115287, DOI 10.1142/S0218202591000083
- C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements, SIAM J. Numer. Anal. 35 (1998), no. 5, 1893–1916. MR 1639966, DOI 10.1137/S0036142995293766
- Carsten Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1187–1202. MR 1736895, DOI 10.1051/m2an:1999140
- Carsten Carstensen, Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element, SIAM J. Numer. Anal. 39 (2002), no. 6, 2034–2044. MR 1897948, DOI 10.1137/S0036142900371477
- Carsten Carstensen and Joachim Schöberl, Residual-based a posteriori error estimate for a mixed Reißner-Mindlin plate finite element method, Numer. Math. 103 (2006), no. 2, 225–250. MR 2222809, DOI 10.1007/s00211-005-0669-3
- D. Chapelle and R. Stenberg, An optimal low-order locking-free finite element method for Reissner-Mindlin plates, Math. Models Methods Appl. Sci. 8 (1998), no. 3, 407–430. MR 1624871, DOI 10.1142/S0218202598000172
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Ricardo Durán and Elsa Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp. 58 (1992), no. 198, 561–573. MR 1106965, DOI 10.1090/S0025-5718-1992-1106965-0
- Ricardo G. Durán, Erwin Hernández, Luis Hervella-Nieto, Elsa Liberman, and Rodolfo Rodríguez, Error estimates for low-order isoparametric quadrilateral finite elements for plates, SIAM J. Numer. Anal. 41 (2003), no. 5, 1751–1772. MR 2035005, DOI 10.1137/S0036142902409410
- I. Fried and S.K. Yang, Triangular, nine-degrees-of-freedoms, plate bending element of quadratic accuracy, Quart. Appl. Math., 31 (1973), pp. 303-312.
- J. Hu, Quadrilateral locking free elements in elasticity, Doctorate Dissertation (in Chinese), Institute of Computational Mathematics, Chinese Academy of Science (2004).
- J. Hu and Z.C. Shi, Analysis for quadrilateral MITC elements for Reissner-Mindlin plate, Preprint 2003-12, Institute of Computational Mathematics, Chinese Academy of Sciences, www.cc.ac.cn/quadri$\_$mitc.ps, Submitted to Math. Comp., 2005.
- T.J.R. Hughes, R.L. Taylor and W. Kanoknukuchai, A simple and efficient element for plate bending, Int. J. Numer. Meth. Engrg., 11 (1977), pp. 1529-1543.
- T.J.R. Hughes, M. Cohen and M. Haroun, Reduced and selective integration techniques in the finite element analysis of plates, Nuclear Engineering and Design, 46 (1978), pp. 203-222.
- Thomas J. R. Hughes, The finite element method, Prentice Hall, Inc., Englewood Cliffs, NJ, 1987. Linear static and dynamic finite element analysis; With the collaboration of Robert M. Ferencz and Arthur M. Raefsky. MR 1008473
- T.J.R. Hughes and R.L. Taylor, The linear Triangular plate bending element, In J.R. Whiteman, editor, The Mathematics of Finite Elements and Applications IV, MAFELAP, 1981, pp. 127-142, Academic Press, 1982.
- F. Kikuchi and K. Ishii, An improved 4-node quadrilateral plate bending element of the Reissner-Mindlin type, Comput. Mech., 23 (1999), pp. 240-249.
- Elsa Liberman, A posteriori error estimator for a mixed finite element method for Reissner-Mindlin plate, Math. Comp. 70 (2001), no. 236, 1383–1396. MR 1836909, DOI 10.1090/S0025-5718-00-01289-8
- Carlo Lovadina and Rolf Stenberg, A posteriori error analysis of the linked interpolation technique for plate bending problems, SIAM J. Numer. Anal. 43 (2005), no. 5, 2227–2249. MR 2192338, DOI 10.1137/040614645
- Mikko Lyly, On the connection between some linear triangular Reissner-Mindlin plate bending elements, Numer. Math. 85 (2000), no. 1, 77–107. MR 1751364, DOI 10.1007/s002110050478
- P.B. Ming and Z.C. Shi, Quadrilateral mesh, Chinese Annals of Mathematics, 23B (2002), pp. 1-18.
- Juhani Pitkäranta and Manil Suri, Design principles and error analysis for reduced-shear plate-bending finite elements, Numer. Math. 75 (1996), no. 2, 223–266. MR 1421988, DOI 10.1007/s002110050238
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- Zhong Ci Shi, A convergence condition for the quadrilateral Wilson element, Numer. Math. 44 (1984), no. 3, 349–361. MR 757491, DOI 10.1007/BF01405567
- Rolf Stenberg and Manil Suri, An $hp$ error analysis of MITC plate elements, SIAM J. Numer. Anal. 34 (1997), no. 2, 544–568. MR 1442928, DOI 10.1137/S0036142994278486
- Manil Suri, Ivo Babuška, and Christoph Schwab, Locking effects in the finite element approximation of plate models, Math. Comp. 64 (1995), no. 210, 461–482. MR 1277772, DOI 10.1090/S0025-5718-1995-1277772-6
- A. Tessler and T. J. R. Hughes, An improved treatment of transverse shear in the Mindlin type four-node quadrilateral element, Comp. Meths. Appl. Mech. Engrg., 39 (1983), pp. 311-335.
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin-New York, 1977, pp. 292–315. MR 483555
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley–Teubner, 1996.
- O.C. Zienkiewicz, R.L. Taylor and J.M. Too, Reduced integration Technique in general analysis of plates and shells, Int. J. Numer. Meth. Engrg., 3 (1971), pp. 275-290.
Bibliographic Information
- C. Carstensen
- Affiliation: Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
- Email: cc@math.hu-berlin.de
- Jun Hu
- Affiliation: LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- MR Author ID: 714525
- Email: hujun@math.pku.edu.cn
- Received by editor(s): March 3, 2006
- Received by editor(s) in revised form: November 11, 2006
- Published electronically: October 18, 2007
- Additional Notes: The first author was supported by DFG Research Center MATHEON “Mathematics for key technologies” in Berlin
The second author was partially supported by Natural Science Foundation of China under Grant 10601003 A Foundation for the Author of Excellent Doctoral Dissertation of PR China 200718 - © Copyright 2007 American Mathematical Society
- Journal: Math. Comp. 77 (2008), 611-632
- MSC (2000): Primary 65N30, 65N15, 35J25
- DOI: https://doi.org/10.1090/S0025-5718-07-02028-5
- MathSciNet review: 2373172