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A POSTERIORI ERROR ESTIMATES
FOR MAXWELL EQUATIONS

JOACHIM SCHOBERL

ABSTRACT. Maxwell equations are posed as variational boundary value prob-
lems in the function space H(curl) and are discretized by Nédélec finite el-
ements. In Beck et al., 2000, a residual type a posteriori error estimator
was proposed and analyzed under certain conditions onto the domain. In
the present paper, we prove the reliability of that error estimator on Lips-
chitz domains. The key is to establish new error estimates for the commuting
quasi-interpolation operators recently introduced in J. Schoberl, Commuting
quasi-interpolation operators for mized finite elements. Similar estimates are
required for additive Schwarz preconditioning. To incorporate boundary con-
ditions, we establish a new extension result.

1. INTRODUCTION

Maxwell equations are partial differential equations describing electro-magnetic
phenomena. In comparison to other fields, their numerical treatment by finite
element methods is relatively new. One reason is that they require the vector valued
function space H(curl), which has many consequences for numerical analysis as a
whole. A recent monograph is [18].

The key for the numerical analysis for Maxwell equations is most often the
de Rham complex [§]. Tt is the basis for the construction of finite elements [19, 20,
311 [14], 1] 26, B2] and the a priori error estimates, preconditioners [16, [3, 28] 22],
and eigenvalue problems [G] [7].

The principle of energy-based a posteriori error estimators [30} 2] is the localiza-
tion of error contributions. For the residual error estimator, the Clément operator
is applied to subtract a global function. By a partition of unity method, the rest
can be split into local functions. The same concept is needed for two-level domain
decomposition methods. After subtracting a coarse grid function, the remainder
can be split into local functions on overlapping sub-domains [29].

Residual based a posteriori error estimators for Maxwell equations were intro-
duced in [4]. In [I7], scattering problems were treated. In these papers, proper
element and inter-element jump terms have been derived. In [21] [I2] the hetero-
geneous Maxwell equation was addressed. An alternative are hierarchical error
estimators [5] or equilibrated residual error estimators [9]. In the present paper, we
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prove the reliability of residual error estimators on Lipschitz domains. The key is to
establish new error estimates for the commuting quasi-interpolation operators in-
troduced recently in [25]. These operators are no projectors. In [27], the operators
have been modified to obtain the projection property as well.

Notation: We write a < b, when a < ¢b, where c¢ is a constant independent of a,
b, the coefficients v and & of the equation, and the mesh-size h. The constant may
depend on the shape of the finite elements. We write a = b for b < a, and we write
a~fora=<bandbd=<a.

The rest of the paper is organized as follows. In Section [2 the variational
problem, the error estimator and the main theorem is presented. The commuting
quasi-interpolation operators are defined in Section Bl and the new approximation
properties are proven in Section [l Necessary extension results for H(curl) and
H(div) are proven in Appendix [Al

2. THE RESIDUAL ERROR ESTIMATOR

Let Q be a bounded, polyhedral Lipschitz domain in R3. Its boundary I' = 9Q
is decomposed into the Dirichlet part I'p and the Neumann part I'y. As usual,
define the space H(curl,w) = {v € [La(w)]? : curlv € [La(w)]?} for some domain w,
and write H(curl) for w = Q. Let V := Hp(curl) := {v € H(curl) : vy =0onT'p}.
Similarly, we define H}, = {v € H' : v = 0 on I'p}. We write v; and v,, for the
tangential and normal traces, respectively.

Several formulations of Maxwell equations lead to the variational problem: find
u € V such that

(1) A(u,v) = f(v) YoeV

with the bilinear-form
A(u,v) := / v(z) curlu curlv dz +/ k(z) v dz
Q Q

and the linear form f(.) defined as

f(v) :=/ijdx.

The coefficients v(z) and k(x) are modified material parameters. In time-stepping
methods, k(z) includes the time step At, while in time harmonic formulations,
the equation becomes complex-valued with k(r) = iwo — w?e, where o and ¢ are
positive coefficient functions. We assume that the bilinear-form A(.,.) is continuous
and inf — sup stable with respect to the norm

[} = vl cwrlollZ, + & [0l
where v and k are positive constants. The given current density j € [Lo]? satisfies
divj =0 and j, = 0.
Let the domain 2 be covered with a shape regular triangulation. We define
the set of vertices v ={Vi},
the set of edges E={FE=1[Vg,Vr]}
the set of faces ~ F ={F = [Vr, VR, Vi]},
the set of tetrahedra 7 ={T = [Vn,, Vp,, V1, V1, ] -
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FIGURE 2. Domains wy and wg

For each edge F we define a unique tangential vector tg, and for each face F' we
define a unique normal vector np. For each edge E, face F, and element T the
local mesh-size hg, hp, and hy is defined by the diameter, and for a vertex V the
mesh-size hy is defined as maxp.y e hr. Note that all geometric entities are closed
sets. We need several domains associated with the entities of the mesh. First,
define the small patches associated with vertices, edges and faces as

QV: UT, QE: U T, QF: U T;
T:VeT T:ECT T:FCT
see Figure [ We will need the influence domains of the interpolation operators.
For this, let wy C Qy be a domain with three dimensional measure |wy | >~ h¥.. It
can be a ball with center V', and a radius proportional to the local mesh-size. We
assume that dist{wy,,wy, } = [V; — Vj}|. Furthermore, let

wg = wp,,wE,|,  wp=wh,wR,wrl|,  wr = |wn,wn,wn,wr]
be the convex hulls of the domains associated with the vertices of the edge FE,
the face F', and the element T; see Figure 2l We assume that wp C Uy cp Qv,

wr C Uyep Qv, and wr € Uy ep Qv. Note that we write w; as an abbreviation
for wy, to avoid more levels of subscripts. Finally, we define the domains

QV = U Qvl and QT = U ﬁvl
VIeQy vieT
containing the neighbor elements of neighbor elements of a vertex V' and an element
T, respectively.
Nédélec [19, 20] finite elements are the natural choice for the approximation of
equation (). For example, the k' order element of the first family of Nédélec
elements generates the space

./\/',’Lc ={v eV :v|lr=ar+br x z with ar,br € [Pk(T)]‘i}

The lowest order element (k = 0) of this family is the popular edge element. We
assume that the finite element space Vj, C V contains the lowest order Nédélec
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space NQ. The finite element approximation to () is to find uy € V}, such that
A(uh,vh) = f(’l}h) V?)h c Vh.

The goal is to derive computable a posteriori error estimators n(up, j) for the error
lu — uplly. In [], a residual error estimator was derived. As usual, it contains
element residuals and jump terms on faces:

. h3 . .
Wun, ) = L eurl venrl w + s — 13, o) + 2| div sl )

hF hF
+ 3 { Sl ewlunlel, ) + - llkusdal, e -
FCT

In [4], the efficiency estimate of the error estimator was proven:

[w—unllv + h.0.t.(5) = n(un, j).
The reliability estimate
Ju = unllv =< n(un, j)

was proven under the assumption of an H'-regular Helmholtz decomposition. This
assumption is satisfied for convex or smooth domains, but does not hold true for
general Lipschitz domains. The main result of this paper is to prove the relia-
bility estimate for problems on Lipschitz domains. In [25], a Clément-type quasi-
interpolation operator was introduced, and a priori estimates were proven. Now, we
prove a new approximation error estimate needed for the a posteriori error analysis:

Theorem 1. There exists an operator 11, : Hp(curl) — N with the following
properties: For every u € Hp(curl) there exists ¢ € H}, and z € [H}]? such that

(2) u—Iu=Vp+ 2
The decomposition satisfies

het lellLaery + IVellary < ellull @,

A

he' el + 1Vallary <0 clleulull,,q,).

The constant ¢ depends only on the shape of the elements in the enlarged element
patch Qp, but does not depend on the global shape of the domain S or the size of
the patch Q.

The proof of the theorem is postponed to Section @l We note that Vz is the
matrix (372) .
i/ij=1,...,n
Corollary 2. The residual error estimator is reliable.

Proof. The proof is standard for residual error estimators. The inf — sup stability
of A(.,.) and Galerkin orthogonality implies
A(u — up,v) v —pv) — A(up, v — o)

|l — up|ly = sup ———= = sup
vev  vllv veV lvllv
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We apply Theorem [I] to decompose v — II,v = Vo + z satisfying the corresponding
norm estimates, and bound

fv—1Ipv) — A(up, v — o)
/j(Vnp—l—z) —/1/ curl uy, curlz—/ kup (Ve + 2) dz
Q Q

Q
= Z/ (j — curlv curlup, — kup)z de + Z / div Kupp dx
TeT TeT
—I—Z/ veurlupleze ds + Z/ Kup|np ds
FeF FeF
hr . . N
< Z —=|l7 — curlv curlup, — Kunl| £, () 7—112ll 2o (1)
TeT ‘/; hr
vk
+ Z Hle/WhHL2(T el 2o (1)
Te:r hr
+ Z \/ = [ curl )| Jell Lo () V. ||ZHL2
FeF
K
+) || Kunlnll o) [ 711l Lo )
FeF F

1/2
< n(un,g) (vl curlolZ, +sllvlz,)
In the last step, we have used the trace theorem %HZHE(F) = %”2”%2@) +

||VZH2L2(T), where 7' is an element containing the face F. O

3. COMMUTING QUASI-INTERPOLATION OPERATORS

To study interpolation operators in H(curl) it is an advantage to consider the
whole sequence of spaces H', H(curl), H(div) and Ly. The corresponding lowest
order finite elements are continuous and piecewise linear elements E}L with the
vertex basis {¢y} for H', the Nédélec elements N} with the edge basis {¢g} for
H(curl), the Raviart Thomas elements RT% with the face basis {pp} in H(div),
and piece-wise constant elements SP with the element basis {¢r} for L. The
basis functions are chosen biorthogonal to the canonical degrees of freedom, i.e.,
ev; (Vi) = 6i, fEl @B, - tids = 0, fFZ ©F, - i ds = d; 5, and fTi er, dr = 0;5.

In [25], quasi-interpolation operators for all these spaces were constructed which
satisfy the commuting diagram properties

VH,‘{ =17V, curl T = TIF curl, divIlf =107 div,
which are visualized in the de Rham complex as

Jz H(curl) curl H(div) dv, g2

3) [y |17 | |t

\% 1 di
£ = AN R SSY.
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For smooth functions, classical nodal interpolation operators can be applied. These
are defined as

(IYw)@) = Y wlV)ev(z),

Vey

(IEv)(z) = Z/Ev~tEds vr(x),

EcE

(It q)(z) = Z/Fq-npds or(z),

FeF

(IF's)(z) = Z sdx or(x).
TeT /T
A quasi-interpolation operator for H' functions is defined by local averaging.

For each vertex V, fix a function fyy € La(wy) such that fwv fr(y)dy = 1 and

v, = h=3/2. One possible choice is f = ﬁ Then, the quasi-interpolation

operator is defined as

o= (] fwwyidy)ev.
% wv
The quasi-interpolation operator is well defined for w € Ly(€2). Due to the integral
constraint on fy,, the quasi-interpolation operator preserves constant functions.

To deal with boundary conditions, we propose a modification for the vertices on
the boundary. Let €2 be an enlarged domain, and let 2p be an outer neighborhood
of the essential boundary I'p; see Figuredin Appendix A. The function w € H, ()
is continuously extended to w € Q. The extension is such that @ = 0 in Qp. In
Appendix A we introduce such extension procedures for all involved function spaces.

If V is a vertex on the essential boundary I'p, we choose wy C p, again with
|wy'| ~ h3. Thus, the interpolation function preserves zero boundary values. If V
is on the natural boundary, we may choose wy C Q such that Wl., depends on
wlq, only.

This class of averaging operators was extended to the other function spaces
in [25]. Now, we give a different definition for the same operators. We define
the quasi-interpolation operator as the composition of the classical interpolation
operator, and a smoothing operator S

I, = I,S.
Let the point z be contained in the tetrahedral element T' = [V, Vr,, Vi, Vi, ]. By
means of its barycentric coordinates A\ (z),. .., A4(z), it is represented as

4
T = Z () V.
j=1

Now, let y; € wr;. Define Z by the same barycentric coordinates with respect to
the tetrahedron [y1, ..., y4]:
4
B2, y1, 92, U3, 0a) = Y Ni(@)ys3
j=1

see Figure Bl
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FiGURE 3. Moved point &

We define the smoothing operator SV for H' functions as

(4) (8Vw)() = / / / / Fy () s (02) Fry () P (a0 (2) g s iy iy

WTl UJT2 L/.JT3 UJT4

If = coincides with a vertex of the element, say, * = Vp,, then A\; = 1 and A2 =
A3 = Ay = 0, and thus, £ = y;. In this case, the smoothing operator simplifies to

(SYw)(Vry) = /fT1 y1)w(y1)dys /fT2 Yo)dyo / Jry (y3)dys / fr, (ya)dyas

/ fr, (y)w(yr)dy: -
wry

The nodal interpolation operator I X requires these vertex values only. Thus, the
quasi-interpolation operator HV =1 VS Viis

HYw = 37 (5% ) @V_Z/fv vy ov.

\42% vey;

Similarly, if « is on an edge, only the two barycentric coordinates of the vertices on
the edge are non-zero, and the quadruple integral simplifies to a double integral.
For faces, the integral simplifies to a triple integral involving the vertices of the
face. This property ensures continuity of SV w between neighboring elements.

The smoothing operators for the H(curl) is defined by the co-variant transfor-
mation

(5) (SEU)(x)ZZ////lefTQng,fn(%)TU(ff)dy4dy3dy2dy17

u.)Tl sz wT3 wT4

the smoothing for H(div) involves the Piola-transformation

(6) o
N / / / /lefTZfT3fT4 det (j_i) (%)7T(](i’) dya dys dy» dy1,

wTy WTy (.de wTy,
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and for the Ly-case it becomes

@ @)= [ [ [ ] e e (5 )s(@) dun dys oz .

Wy WTy WTy WT,

The H(curl) quasi-interpolation operator is

Mfu = IfSEu—Z/ (SEu)ids g

Fee
V2 - di
= S [ [ tmite [ [(5) @], s dndwe e
Feg Vi ¢
WE, WEy
= > / /fE1fE2/ up ds dy dyz ¢p.
Eeg v
WEy WE,

Instead of taking the line integral of the tangential component from Vg, to Vg,,
one integrates over all lines from wg, to wg,, and averages. This was the definition
n [25]. Similarly, the H(div) quasi-interpolation operator is a triple-integral over
the normal flux over moved faces:

W= [ [ [intese [ ads dndgeds or

FeF
€ WF) WFy WFy [y1,y2,y3]

Lemma 3. The smoothing operators commute in the sense of

vsY = S§Fv,
curl S¥ = SF curl,
divs? = STdiv.

Proof. We prove the first relation. The other ones use the proper transformation
rules for the co-variant and the Piola-transformation:

(vs"we) = [ [ [ [ nsn @) dndmdyadn

////fT *) (Vw)(#))dyadysdyady

= SE Vw)(
O
Corollary 4. The quasi-interpolation operators commute in the sense of
VIl = N7V,
curl HE = H,I; curl,
divIlf = 1} div.
Proof. The nodal interpolation operators commute, so the composition I, = IS
also commutes. [l

Remark 5. There are several possibilities to choose the weighting functions fy such
that the H' operator preserves finite element functions. But, the operators for the
other spaces will in general not inherit this projection property. For the purpose
of a posteriori error analysis, the projection property is not required. In [27], the
operators are modified to obtain projections.
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4. INTERPOLATION ERROR ESTIMATES FOR THE II1¥

Before proving Theorem[I] we first analyze the decomposition of the interpolation
error into local H(curl) functions.

Theorem 6. There exists a decomposition of the interpolation error
u— Ty = Z wy with uy € Hp(curl, Qy),
Vey

where Hp(curl,Qy) = {v € Hp(curl) : v = 0 in Q\ Qv }. This decomposition
satisfies the local estimates

PN

[0 PRE) [l (@

| curluy ||,y =l curlu||L2(§V).
Proof. We decompose the interpolation error as
(8) u—TPu = (u— S¥u) + (S¥u — IF SFu),

and bound the two terms on the right hand side in Lemma [0 and Lemma
below. (]

Lemma 7. There exists a decomposition

(9) u— SFu= Z uy with uy € Hp(curl, Qy)

which satisfies the continuity estimates

A

lavlia@ey = Nl @,

[eurluy L,y = [leurlull,, g,

Proof. We formally extend the quadruple integral of the smoothing operators to an
N-dimensional integral, where N is the global number of vertices:

§Vw(z) = / / Frln) - Fv(gn)w(@) dyy - - dy.

w1

Formally, we write & = Z(x, y1,...yn). Indeed, & depends only on the four (three,
two, one) y; corresponding to the vertices of the element (face, edge, vertex, respec-
tively) containing the point x. The other integrals fwk fx(yk)dyy are just constant
factors 1. This extended notation allows the definition of partial smoothing opera-
tors

SVw= [+ [ A fiua 35, Vi, Vi) dys - din
wi wi

We can apply telescoping

N

w—vazz:(Siv_lw—Sivw).

i=1
These terms are indeed a local decomposition of w. Let w; := S jw — SYw. If z
does not belong to the interior of Qy;, then & does not depend on y;, which implies
that w;(z) = 0. In the same way, we define partial smoothing operators for the
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other spaces. Again, the partial smoothing operators commute. It remains to show
the La-bounds for the decomposition, namely

[Si—1u = Siully@v) = ull, @, )-
The commutativity immediately implies such bounds for the semi-norms, e.g.,
Jeurl(SE yu — SPu)l|yay) = I(SF 3 — SF) curlullzyay) < [lewlull, g, -
The Ly continuity is proven element-wise for .S;. We show that
18Y wllLo(ry = 1w Ly (or)-

The operator S} performs smoothing for the vertices T of the element with T < 1,
but keeps vertices T; with j > ¢ constant. To keep the complexity of the notation
reasonable, we assume (w.l.0.g.) that smoothing is performed for the first two
vertices, i.e., Ty < 4, To < 4, T3 > i, and T4 > ¢. Then, smoothing gives on the
element T’

(S} w)(z) = / / fr (y1) fr, (y2)w (2 (2, Y1, yo, Vo, V) dyadyn.
uJTl wT2
We apply the Holder inequality for L; — Lo, to bound
157 wlZ, )

= /T(/ /fT1(y1)fT2(y2)U1(f($,y1,yg,VT3;VT4))dy2dy1)2dx

le UJT2

/T(/ /|fT1(Z/1)|\f:a(yz)ldygdyl)2

UJTl wT2

IN

sup |’LU(£i'(£C, Y1,Y2, VT37 VT4))‘2 dz
Y1 €W
Y2€wT,

— ||le||%1(WT1)||fT2||%1(wT2) sup /Tw(i(x,ylay%VT37VT4))2d:E.
b 1
Y2 €Wy

There holds || £z, ||z, (wr,) < 1173 | La(wry)lwr |2 =< 1. The integral in the last term
is transformed to the moved tetrahedron &(T, y1,y2, Vry, V1, ):

/ w(f(%yl,y% VT37VT4))2 dx
T

diy —1
= / w(e)?det (7)) d
i(T’yl,yz,VTs ,VT4) dx

IA

||wH%2(:f:(T,y1,y2,VT3,VT4)) < NwllZ, -

We have used the fact that % as well as its inverse is bounded by a constant due to
the sufficiently separated domains wy. The Ls-estimates for the other smoothing
operators are proven in the same way. O

We have already observed that the smoothing operator SV provides well defined
vertex values. Similarly, the other smoothing operators also provide well defined
values at some of the lower dimensional objects.
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Lemma 8. The smoothed functions have well defined boundary values in the fol-
lowing sense:

ISV wliF, 0y = B7P Wi,y
1SVwlZ, iz = A 2wl )
||5Vw||2L2(F) = bl
IS5l T,y = A2 Ul wp):
ISl T,y = Wl s
I(s* Q)TLHLZ(F) =l -
Proof. We prove ||SVw||L (7 71”“’”%2@@)' The other estimates follow with

the same arguments. The face F' is split into three parts, F,, F,, F),, according
to

Fy, = {z: Mi(z) = max{\1(z), A2(z), Ag(x) }}.
We apply Cauchy-Schwarz on wg,, and the Ly — Lo, Holder inequality on wg, and
wr, to bound

HSVwII%2 (Fay)

- /F / / /fl (Y1) f2(y2) f3(ys)w(@ (x,y1,y27y3))dy3dy2dy1)2dx

WF; WFy WFg

VA2, L Fl2 1 s l2, sup / / (@91, y2,33)) 2 dyndee
Fxy Jwr,

Y2,Y3

di\ !
< hr sup/ / (n)? det< x) dn dx.
Y2,Y3 J Fy, (z,wry ,Y2,93) dyl

The transformation is &(x, y1, Y2, y3) = Z?Zl Ai(x) y;. Thus, dd_zi = A (z)I. On Fy,

there is A; € [3,1], and thus det j—i ~ 1. Insert this to obtain

1Vl = [ [ e dnde <hgt ol
A wWF

1

IA

The Ly-norm on the other two parts, F)\, and F),, follow from permutation. O
Lemma 9. There exists an extension operator
E”: H)(E) — H} ()
which is continuous in the sense of
IEPw| g g + B2 EFw]| i (m) hllw| m(m),

IEPw| 1y 0m) + B 2N BP0 ey = Bllwllz,s)-

IA

Here, F' is an arbitrary face inside Qg. There exists an extension operator
B : HY(F) — H}(Qp)

which is continuous in the sense of

A

IEFwllmiopm < hY2{wllm ),

IEF Wl Ly < BMY2(lwl o).
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Proof. Let w € H}(E). We construct the extension onto an element T’ sharing
the edge E. Let Ag, and Ag, be the two barycentric coordinates of the vertices
connected by the edge, and set A\g = Ag, + A\g,.

The extension EFw is defined by

A\E,
EPw(z) = Apw(i)  with @= “EVp.

i=1 )\E '
Product and chain rule lead to
&
VEEw(z) = Vigpw(d)+ )\Evtw(:ﬁ)i.
Observe that |[V);| < h~1, and
d d Ag,(Ve, — Vg,) AE
ApoL o2\ LABTEL T V) (gay — 2B ) (Vi — Vi),
B =Apo g (VAE, )\EV e)(Ve, — Vg,)

From |Vg, — Vi,| < h there follows [Ag 92| < 1. This leads to
IVEPw(@)| 2 ™ w(@)| + [Viw(@)].

With the transformation of integrals and a Friedrichs’ inequality on the edge we
observe that

IVERw|Z, ) = h™H w(@(@))l| oy + [IVew@ @)L,y 2 2IVewl| o).

The Lo estimate and the estimates on faces is left to the reader. Similarly, we define
the extension operator from faces by

3
Efw(z) = Apw(&)  with &= ; A;; Vs,

where Fi, Fy, and F3 are the vertices of the face, and A\p = Z‘;’Zl Ar,. The
continuity estimates follow with the same arguments. Il

Lemma 10. There exists a decomposition
(10) SEy — 1FSPu = Zuv with uy € Hp(curl,Qy)
vev
which satisfies the continuity estimates
lavlzaony = ullgayy:
lewluyyayy = llowlul,q,

Proof. Since SFu € Ly(F), the nodal edge interpolator is well defined. Set ug :=
SFy — IESFy. 1t satisfies the continuity estimates

hlluzillr,ey = ullos,
W2 g,

luall L, (1)

||unFa

s -

|L2(F) =
=

Integrating the tangential component of ug along the edge E = [E7, Es] results in

xr
bp(x) ::/ ug ¢ ds.

E4
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Due to zero mean, ®x € H}(E). Using the extension from edges of Lemma [0 we
construct

Uz = Us — Z VEE®D.
FEe&

Each of the terms VEF® g can be included in one of the terms of the decomposition
(Id). The remaining us satisfies

W2 g,

lusll L (1)

[l

[l -

lLar) =
=

By commutativity, the following estimates are also obtained for curl u:

W2\ (curlug)all oy = [l eurlul,,

Feurlug|lL,ry = [lcurlufly,.

Next, we extend from faces. For this, decompose usz: € Hp(curl, F') into

ustlp = (VOp + 2p)t
such that @ € H}(F) and 2z € [H (F))? satisfy
IVioplle, +lzrlle, = llusellL.,
IVizpllo,ry = [lcurlug,].

This is possible due to the two-dimensional version of [22], Lemma 2.2. Both
functions, ®r and zp, are extended by EF onto the adjacent elements. These
terms match the decomposition (0] and satisfy the continuity estimates

IVET®r + B 2p || 1,000 = 0 21(SPw)il| o) = Nt
and
| curl EX 25| 1, (0p) = h2 curl(SEu) ||, (r) < || curlul|y,.

Finally, define

ug=uz— Yy {VE'®p + Ezp}
FeF
which has vanishing tangential trace on all faces, and thus splits into local terms. [

By the same techniques, one also proves a decomposition result for the space
H(div). It might be useful for the analysis of a posteriori error estimators for
mixed methods involving the space H(div) such as in [I0].

Theorem 11. There exists a decomposition of the interpolation error
q—Tg= Z qv with qv € Hp(div,Qy),
vey

where Hp(div,Qy) = {v € Hp(div) : v = 0 in Q\ Qv}. This decomposition
satisfies the local estimates

A

lavilcaovn)y = Nz, @y

[divavlir.o,) = lIdivaly,a,)

Now, we are ready to prove our main result:
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Proof of Theorem [[l. Let u = > uy be the decomposition of Theorem [B First,
assume that V' is an inner vertex or a vertex on the Dirichlet boundary. Then
uy € Ho(curl, Q). According to [22], Lemma 2.2, there exists a decomposition

uy = Voy + 2y
with oy € HE(Qy) and 2y € [Hg(2y)]?. The decomposition is bounded by

ot leviieao) + IVevlisey) = luwvliiey)
hytllzvilisa@) + 1IVav gy = llewluy||pyay),

where the involved constants depend only on the shape of the local domain 2y .
If the vertex is on the Neumann boundary, then uy; does not necessarily vanish
on the boundary of Qy which is also the domain boundary. Since the domain is
Lipschitz, the whole patch 2y can be mirrored over the domain boundary to obtain
Qy. The function is extended by the co-variant transformation to Hg(curl, Q).
Now, the above decomposition can be applied.

We define
p= Z YV and z = Z 2y
Vey Vey

to obtain the claimed decomposition (2I)
u—TFu=Ve+ 2

The norm bounds follow from the finite number of overlapping patches. (I

APPENDIX A. COMMUTING EXTENSION OPERATORS

We establish extension operators for the spaces H(curl) and H(div) which are
bounded in the Ls norm and in the corresponding semi-norms. The extended func-
tion vanishes on an outer neighborhood of the Dirichlet boundary. We introduce a
continuous bijection x — Z(z) between the inner (£2;) and outer (£2,) neighborhoods
of the boundary 9€; see Figure [l The transformation shall fulfill

I(z) ==z Ve ely

and is bounded in the sense

dz dz\—1
— < — <e.
|zl e e |(G) .=

On Dirichlet boundaries, we shift the exterior domain (2, away from the boundary
to obtain the domain Qp between I'p and Z(I'p). Let Q@ = QU Qp U Q..

We sketch this construction for general Lipschitz domains. Let Uy,...,Ups be
an open covering of the boundary 92. Assume that a strip S of with s along 02 is
contained in (JU;. Let (eg,, ey, ec,) be local coordinate systems, and let o;(&;,7:)
be Lipschitz functions such that U; N Q = {(&,m:,¢) € Us = G > pi(&,m4) )
Define the limited distance function to the non-Dirichlet boundary as d(z) :=
min{s/2, dist{z, 'y }}. Now, we can define the mirroring operator with shift for
the Dirichlet boundary: Assume x € U; N Q has the local coordinates (&, n:, ().
The vertical projection to the boundary x%(z) is defined by the local coordinates
(& miy 0i(&iymi)), and Z(z) = xp— (|28 —2|+d(2p))ec, . Finally, introduce a partition
of unity {t,} such that > v; = 1 on 9, and set #(z) := > 1;(2?)F;(z).
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FIGURE 4. Transformation for extension

The extension for H' functions is defined by mirroring:

w(zx), x €,
w(zx) = { 0, x € Qp,
w(

7 Y(x)), z€Q,.

Using the chain rule, its piece-wise gradient evaluates to

Vuw(z), x €,
Vu(x) = 0, x € Qp,

@)~ T(Vw) (@~ (z)), x€ Q.

Since the extension has continuous traces on the interfaces between €;, Q,, and Qp,
the piece-wise gradient is also the global gradient of w. We have assumed that &’ as
well as its inverse is in L. This ensures that the extension is bounded with respect
to the Lo-norm. It also ensures that the gradient of the extension is bounded by
the Lo-norm of the gradient, i.e., the extension is bounded in the H'-semi-norm.

Motivated by the commuting diagram, the extension @ of an H(curl) function u
is defined like the extension of gradients:

u(x), x €,
ﬁ(m) = 07 HARS QDa

(@) Tu(@ Yz)), z€ Q.

With this so-called co-variant transformation for the function w, the transformation
of its curl evaluates to the Piola-transformation:

curl u(z), x €,

curla(z) = 0, x € Qp,
det(7')~1(7') curlu(z~1(z)), = € Q..
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The extension @ has continuous tangential traces ensuring that @ € H(curl, Q).
Since the curl of the extended function depends continuously only on the curl of
the original function, the extension is bounded in the curl semi-norm. In the same
fashion, we define the extension of H(div) functions ¢ by the Piola-transformation:

q(x), r €€,
q(x) = 07 T € QDy
det(3)"1(#)q(5 " (x)), € Q.

This one provides continuous normal traces. Now, forming the divergence leads to

div g(z), x € 1,
divg(z) = 0, x € Qp,
det(z") "L divg(i=t(z)), z € Q.

We also take this one for the extension of Lo-functions.
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