An $hp$-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type
HTML articles powered by AMS MathViewer
- by Thirupathi Gudi, Neela Nataraj and Amiya K. Pani;
- Math. Comp. 77 (2008), 731-756
- DOI: https://doi.org/10.1090/S0025-5718-07-02047-9
- Published electronically: November 21, 2007
- PDF | Request permission
Abstract:
In this paper, an $hp$-local discontinuous Galerkin method is applied to a class of quasilinear elliptic boundary value problems which are of nonmonotone type. On $hp$-quasiuniform meshes, using the Brouwer fixed point theorem, it is shown that the discrete problem has a solution, and then using Lipschitz continuity of the discrete solution map, uniqueness is also proved. A priori error estimates in broken $H^1$ norm and $L^2$ norm which are optimal in $h$, suboptimal in $p$ are derived. These results are exactly the same as in the case of linear elliptic boundary value problems. Numerical experiments are provided to illustrate the theoretical results.References
- Mark Ainsworth and David Kay, The approximation theory for the $p$-version finite element method and application to non-linear elliptic PDEs, Numer. Math. 82 (1999), no. 3, 351–388. MR 1692127, DOI 10.1007/s002110050423
- Mark Ainsworth and David Kay, Approximation theory for the $hp$-version finite element method and application to the non-linear Laplacian, Appl. Numer. Math. 34 (2000), no. 4, 329–344. MR 1782539, DOI 10.1016/S0168-9274(99)00040-9
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- I. Babuška and Manil Suri, The $h$-$p$ version of the finite element method with quasi-uniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 2, 199–238 (English, with French summary). MR 896241, DOI 10.1051/m2an/1987210201991
- C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world, Preprint of the Laboratoire Jacques-Louis Lions, No. R03038, (2003).
- Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. MR 1974504, DOI 10.1137/S0036142902401311
- Rommel Bustinza and Gabriel N. Gatica, A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions, SIAM J. Sci. Comput. 26 (2004), no. 1, 152–177. MR 2114338, DOI 10.1137/S1064827502419415
- Rommel Bustinza and Gabriel N. Gatica, A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics, J. Comput. Phys. 207 (2005), no. 2, 427–456. MR 2144625, DOI 10.1016/j.jcp.2005.01.017
- Paul Castillo, Bernardo Cockburn, Ilaria Perugia, and Dominik Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676–1706. MR 1813251, DOI 10.1137/S0036142900371003
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- V. Dolejší, M. Feistauer, and V. Sobotíková, Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 25-26, 2709–2733. MR 2136396, DOI 10.1016/j.cma.2004.07.017
- Paul Houston, Janice Robson, and Endre Süli, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I. The scalar case, IMA J. Numer. Anal. 25 (2005), no. 4, 726–749. MR 2170521, DOI 10.1093/imanum/dri014
- Jim Douglas Jr. and Todd Dupont, A Galerkin method for a nonlinear Dirichlet problem, Math. Comp. 29 (1975), 689–696. MR 431747, DOI 10.1090/S0025-5718-1975-0431747-2
- S. Kesavan, Topics in functional analysis and applications, John Wiley & Sons, Inc., New York, 1989. MR 990018
- A. Lasis and E. Süli, Poincar$\acute {\mbox {e}}$ -Type inequalities for Broken Sobolev spaces, Isaac Newton Institute for Mathematical Sciences, Preprint No. NI03067-CPD, (2003).
- A. Lasis and E. Süli, One-parameter discontinuous Galerkin finite element discretisation of quasilinear parabolic problems, Oxford Univ. Comp. Lab., Research Report NA-04/25 (2004).
- F. A. Milner and M. Suri, Mixed finite element methods for quasilinear second order elliptic problems: the $p$-version, RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 7, 913–931 (English, with English and French summaries). MR 1199319, DOI 10.1051/m2an/1992260709131
- Ilaria Perugia and Dominik Schötzau, An $hp$-analysis of the local discontinuous Galerkin method for diffusion problems, Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), 2002, pp. 561–571. MR 1910752, DOI 10.1023/A:1015118613130
- Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 3, 902–931. MR 1860450, DOI 10.1137/S003614290037174X
Bibliographic Information
- Thirupathi Gudi
- Affiliation: Department of Mathematics, Industrial Mathematics Group, Indian Institute of Technology Bombay, Powai, Mumbai-400076
- Email: trpathi@math.iitb.ac.in
- Neela Nataraj
- Affiliation: Department of Mathematics, Industrial Mathematics Group, Indian Institute of Technology Bombay, Powai, Mumbai-400076
- Email: neela@math.iitb.ac.in
- Amiya K. Pani
- Affiliation: Department of Mathematics, Industrial Mathematics Group, Indian Institute of Technology Bombay, Powai, Mumbai-400076
- Email: akp@math.iitb.ac.in
- Received by editor(s): April 14, 2006
- Received by editor(s) in revised form: February 23, 2007
- Published electronically: November 21, 2007
- © Copyright 2007 American Mathematical Society
- Journal: Math. Comp. 77 (2008), 731-756
- MSC (2000): Primary 65N12, 65N15, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-07-02047-9
- MathSciNet review: 2373177