An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems
HTML articles powered by AMS MathViewer
- by Junqing Chen and Zhiming Chen;
- Math. Comp. 77 (2008), 673-698
- DOI: https://doi.org/10.1090/S0025-5718-07-02055-8
- Published electronically: December 5, 2007
- PDF | Request permission
Abstract:
An adaptive perfectly matched layer (PML) technique for solving the time harmonic electromagnetic scattering problems is developed. The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates. Combined with the adaptive finite element method, the adaptive PML technique provides a complete numerical strategy to solve the scattering problem in the framework of FEM which produces automatically a coarse mesh size away from the fixed domain and thus makes the total computational costs insensitive to the thickness of the PML absorbing layer. Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method.References
- Ivo Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York-London, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR 421106
- I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 483395, DOI 10.1137/0715049
- Gang Bao and Haijun Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell’s equations, SIAM J. Numer. Anal. 43 (2005), no. 5, 2121–2143. MR 2192334, DOI 10.1137/040604315
- Rudi Beck, Ralf Hiptmair, Ronald H. W. Hoppe, and Barbara Wohlmuth, Residual based a posteriori error estimators for eddy current computation, M2AN Math. Model. Numer. Anal. 34 (2000), no. 1, 159–182 (English, with English and French summaries). MR 1735971, DOI 10.1051/m2an:2000136
- Jean-Pierre Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), no. 2, 185–200. MR 1294924, DOI 10.1006/jcph.1994.1159
- M. Sh. Birman and M. Z. Solomyak, $L_2$-theory of the Maxwell operator in arbitrary domains, Uspekhi Mat. Nauk 42 (1987), no. 6(258), 61–76, 247 (Russian). MR 933995
- James H. Bramble and Joseph E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comp. 76 (2007), no. 258, 597–614. MR 2291829, DOI 10.1090/S0025-5718-06-01930-2
- Zhiming Chen and Xuezhe Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal. 43 (2005), no. 2, 645–671. MR 2177884, DOI 10.1137/040610337
- Zhiming Chen, Long Wang, and Weiying Zheng, An adaptive multilevel method for time-harmonic Maxwell equations with singularities, SIAM J. Sci. Comput. 29 (2007), no. 1, 118–138. MR 2285885, DOI 10.1137/050636012
- Zhiming Chen and Haijun Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal. 41 (2003), no. 3, 799–826. MR 2005183, DOI 10.1137/S0036142902400901
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Francis Collino and Peter Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput. 19 (1998), no. 6, 2061–2090. MR 1638033, DOI 10.1137/S1064827596301406
- David Colton and Rainer Kress, Inverse acoustic and electromagnetic scattering theory, 2nd ed., Applied Mathematical Sciences, vol. 93, Springer-Verlag, Berlin, 1998. MR 1635980, DOI 10.1007/978-3-662-03537-5
- Anne-Sophie Bonnet-Ben Dhia, Christophe Hazard, and Stephanie Lohrengel, A singular field method for the solution of Maxwell’s equations in polyhedral domains, SIAM J. Appl. Math. 59 (1999), no. 6, 2028–2044. MR 1709795, DOI 10.1137/S0036139997323383
- Thorsten Hohage, Frank Schmidt, and Lin Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method, SIAM J. Math. Anal. 35 (2003), no. 3, 547–560. MR 2048399, DOI 10.1137/S0036141002406485
- M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations, Computing 60 (1998), no. 3, 229–241. MR 1621305, DOI 10.1007/BF02684334
- Peter Monk, A posteriori error indicators for Maxwell’s equations, J. Comput. Appl. Math. 100 (1998), no. 2, 173–190. MR 1659117, DOI 10.1016/S0377-0427(98)00187-3
- Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447, DOI 10.1093/acprof:oso/9780198508885.001.0001
- J.-C. Nédélec, Mixed finite elements in $\textbf {R}^{3}$, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, DOI 10.1007/BF01396415
- Jean-Claude Nédélec, Acoustic and electromagnetic equations, Applied Mathematical Sciences, vol. 144, Springer-Verlag, New York, 2001. Integral representations for harmonic problems. MR 1822275, DOI 10.1007/978-1-4757-4393-7
- Alfred H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. MR 373326, DOI 10.1090/S0025-5718-1974-0373326-0
- A. Schmidt and K.G. Siebert, ALBERT: An adaptive hierarchical finite element toolbox, IAM, University of Freiburg, 2000. http://www.mathematik.uni-freiburg.de/IAM/Research/projectsdz/albert.
- F.L. Teixeira and W.C. Chew, Advances in the theory of perfectly matched layers, In: W.C. Chew et al., (eds.), Fast and Efficient Algorithms in Computational Electromagnetics, 283-346, Artech House, Boston, 2001.
- E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math. 27 (1998), no. 4, 533–557. Absorbing boundary conditions. MR 1644675, DOI 10.1016/S0168-9274(98)00026-9
- G.N. Watson, A Treatise on The Theory of Bessel Functions, Cambridge, 1922.
Bibliographic Information
- Junqing Chen
- Affiliation: Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China
- Address at time of publication: Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- Email: jqchen@lsec.cc.ac.cn
- Zhiming Chen
- Affiliation: LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China
- Email: zmchen@lsec.cc.ac.cn
- Received by editor(s): March 6, 2006
- Received by editor(s) in revised form: February 25, 2007
- Published electronically: December 5, 2007
- Additional Notes: This work was supported in part by China NSF under the grant 10428105 and by the National Basic Research Project under the grant 2005CB321701.
- © Copyright 2007 American Mathematical Society
- Journal: Math. Comp. 77 (2008), 673-698
- MSC (2000): Primary 65N30, 65N50, 78A25
- DOI: https://doi.org/10.1090/S0025-5718-07-02055-8
- MathSciNet review: 2373175