A local Lagrange interpolation method based on $C^{1}$ cubic splines on Freudenthal partitions
HTML articles powered by AMS MathViewer
- by Gero Hecklin, Günther Nürnberger, Larry L. Schumaker and Frank Zeilfelder;
- Math. Comp. 77 (2008), 1017-1036
- DOI: https://doi.org/10.1090/S0025-5718-07-02056-X
- Published electronically: November 20, 2007
- PDF | Request permission
Abstract:
A trivariate Lagrange interpolation method based on $C^{1}$ cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.References
- Alfeld, P., A trivariate $C^{1}$ Clough-Tocher interpolation scheme, Comput. Aided Geom. Design, 1 (1984), 169–181.
- Peter Alfeld and Larry L. Schumaker, Smooth macro-elements based on Clough-Tocher triangle splits, Numer. Math. 90 (2002), no. 4, 597–616. MR 1888831, DOI 10.1007/s002110100304
- Peter Alfeld and Larry L. Schumaker, Smooth macro-elements based on Powell-Sabin triangle splits, Adv. Comput. Math. 16 (2002), no. 1, 29–46. MR 1888218, DOI 10.1023/A:1014299228104
- Peter Alfeld and Larry L. Schumaker, A $C^2$ trivariate macro-element based on the Clough-Tocher-split of a tetrahedron, Comput. Aided Geom. Design 22 (2005), no. 7, 710–721. MR 2169057, DOI 10.1016/j.cagd.2005.06.007
- Peter Alfeld and Larry L. Schumaker, A $C^2$ trivariate macroelement based on the Worsey-Farin split of a tetrahedron, SIAM J. Numer. Anal. 43 (2005), no. 4, 1750–1765. MR 2182148, DOI 10.1137/040612609
- Peter Alfeld and Larry L. Schumaker, A $C^2$ trivariate double-Clough-Tocher macro-element, Approximation theory XI: Gatlinburg 2004, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005, pp. 1–14. MR 2126670
- Peter Alfeld, Larry L. Schumaker, and Maritza Sirvent, On dimension and existence of local bases for multivariate spline spaces, J. Approx. Theory 70 (1992), no. 2, 243–264. MR 1172021, DOI 10.1016/0021-9045(92)90087-5
- Peter Alfeld, Larry L. Schumaker, and Walter Whiteley, The generic dimension of the space of $C^1$ splines of degree $d\geq 8$ on tetrahedral decompositions, SIAM J. Numer. Anal. 30 (1993), no. 3, 889–920. MR 1220660, DOI 10.1137/0730047
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Clough, R. W., Tocher, J. L., Finite element stiffness matrices for analysis of plates in bending, Proceedings Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965.
- Hans Freudenthal, Simplizialzerlegungen von beschränkter Flachheit, Ann. of Math. (2) 43 (1942), 580–582 (German). MR 7105, DOI 10.2307/1968813
- Thomas Hangelbroek, Günther Nürnberger, Christian Rössl, Hans-Peter Seidel, and Frank Zeilfelder, Dimension of $C^1$-splines on type-6 tetrahedral partitions, J. Approx. Theory 131 (2004), no. 2, 157–184. MR 2106535, DOI 10.1016/j.jat.2004.09.002
- G. Hecklin, G. Nürnberger, and F. Zeilfelder, The structure of $C^1$ spline spaces on Freudenthal partitions, SIAM J. Math. Anal. 38 (2006), no. 2, 347–367. MR 2237151, DOI 10.1137/040614980
- Tommy R. Jensen and Bjarne Toft, Graph coloring problems, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1304254
- Lai, M.-J., Le Méhauté, A., A new kind of trivariate $C^{1}$ spline, Advances in Comp. Math., 21 (2004), 373–392.
- Ming-Jun Lai and Larry L. Schumaker, Macro-elements and stable local bases for splines on Clough-Tocher triangulations, Numer. Math. 88 (2001), no. 1, 105–119. MR 1819391, DOI 10.1007/PL00005435
- Lai, M.-J., Schumaker, L. L., Spline Functions on Triangulations, Cambridge University Press, Cambridge, 2007.
- Nürnberger, G., Rayevskaya, V., Schumaker, L. L., Zeilfelder, F., Local Lagrange interpolation with $C^{2}$ splines of degree seven on triangulations, Advances in Constructive Approximation, M. Neamtu and E. Saff (eds.), Nashboro Press, Brentwood, TN, 2004, 345–370.
- Günther Nürnberger, Vera Rayevskaya, Larry L. Schumaker, and Frank Zeilfelder, Local Lagrange interpolation with bivariate splines of arbitrary smoothness, Constr. Approx. 23 (2006), no. 1, 33–59. MR 2176226, DOI 10.1007/s00365-005-0600-2
- G. Nürnberger, C. Rössl, H.-P. Seidel, and F. Zeilfelder, Quasi-interpolation by quadratic piecewise polynomials in three variables, Comput. Aided Geom. Design 22 (2005), no. 3, 221–249. MR 2122490, DOI 10.1016/j.cagd.2004.11.002
- Nürnberger, G., Schumaker, L. L., Zeilfelder, F., Local Lagrange interpolation by bivariate $C^{1}$ cubic splines, Mathematical Methods for Curves and Surfaces III, Oslo, 2000, T. Lyche and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 2000, 393–404.
- Günther Nürnberger, Larry L. Schumaker, and Frank Zeilfelder, Lagrange interpolation by $C^1$ cubic splines on triangulated quadrangulations, Adv. Comput. Math. 21 (2004), no. 3-4, 357–380. MR 2073146, DOI 10.1023/B:ACOM.0000032044.49282.8a
- Nürnberger, G., Schumaker, L. L., Zeilfelder, F., Two Lagrange interpolation methods based on $C^{1}$ splines on tetrahedral partitions, Approximation Theory XI: Gatlinburg 2004, C. K. Chui, M. Neamtu, and L. L. Schumaker (eds.), Nashboro Press, Brentwood, 2005, 327–344.
- G. Nürnberger and F. Zeilfelder, Developments in bivariate spline interpolation, J. Comput. Appl. Math. 121 (2000), no. 1-2, 125–152. Numerical analysis in the 20th century, Vol. I, Approximation theory. MR 1780046, DOI 10.1016/S0377-0427(00)00346-0
- Günther Nürnberger and Frank Zeilfelder, Local Lagrange interpolation by cubic splines on a class of triangulations, Trends in approximation theory (Nashville, TN, 2000) Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2001, pp. 333–342. MR 1938023
- Günther Nürnberger and Frank Zeilfelder, Lagrange interpolation by bivariate $C^1$-splines with optimal approximation order, Adv. Comput. Math. 21 (2004), no. 3-4, 381–419. MR 2073147, DOI 10.1023/B:ACOM.0000032043.07621.62
- Rössl, C., Zeilfelder, F., Nürnberger, G., Seidel, H.-P., Reconstruction of volume data with quadratic super splines, Trans. Visualization and Computer Graphics, J.J. van Wijk, R.J. Moorhead, and G. Turk, (eds.), Volume 10, 4, 2004, 397–409.
- Larry L. Schumaker, Dual bases for spline spaces on cells, Comput. Aided Geom. Design 5 (1988), no. 4, 277–284. MR 983463, DOI 10.1016/0167-8396(88)90009-X
- Larry L. Schumaker and Tatyana Sorokina, $C^1$ quintic splines on type-4 tetrahedral partitions, Adv. Comput. Math. 21 (2004), no. 3-4, 421–444. MR 2073148, DOI 10.1023/B:ACOM.0000032045.03775.8d
- Larry L. Schumaker and Tatyana Sorokina, A trivariate box macroelement, Constr. Approx. 21 (2005), no. 3, 413–431. MR 2122316, DOI 10.1007/s00365-004-0572-7
- Sorokina, T., Multivariate $C^{1}$ macro elements, Ph.D. thesis, Vanderbilt University, 2004.
- Sorokina, T., Worsey, A., A multivariate Powell-Sabin interpolant, Advances in Comp. Math., to appear.
- Tatyana Sorokina and Frank Zeilfelder, Local quasi-interpolation by cubic $C^1$ splines on type-6 tetrahedral partitions, IMA J. Numer. Anal. 27 (2007), no. 1, 74–101. MR 2289272, DOI 10.1093/imanum/drl014
- A. J. Worsey and G. Farin, An $n$-dimensional Clough-Tocher interpolant, Constr. Approx. 3 (1987), no. 2, 99–110. MR 889547, DOI 10.1007/BF01890556
- A. J. Worsey and B. Piper, A trivariate Powell-Sabin interpolant, Comput. Aided Geom. Design 5 (1988), no. 3, 177–186. MR 959603, DOI 10.1016/0167-8396(88)90001-5
- Don R. Wilhelmsen, A Markov inequality in several dimensions, J. Approximation Theory 11 (1974), 216–220. MR 352826, DOI 10.1016/0021-9045(74)90012-4
Bibliographic Information
- Gero Hecklin
- Affiliation: Institute for Mathematics, University of Mannheim, 68131 Mannheim, Germany
- Email: hecklin@web.de
- Günther Nürnberger
- Affiliation: Institute for Mathematics, University of Mannheim, 68131 Mannheim, Germany
- Email: nuern@rumms.uni-mannheim.de
- Larry L. Schumaker
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- Email: larry.schumaker@vanderbilt.edu
- Frank Zeilfelder
- Affiliation: Institute for Mathematics, University of Mannheim, 68131 Mannheim, Germany
- Email: zeilfeld@math.uni-mannheim.de
- Received by editor(s): August 17, 2006
- Received by editor(s) in revised form: February 16, 2007
- Published electronically: November 20, 2007
- © Copyright 2007 American Mathematical Society
- Journal: Math. Comp. 77 (2008), 1017-1036
- MSC (2000): Primary 41A15, 41A05, 65D05, 65D07, 65D17, 41A63
- DOI: https://doi.org/10.1090/S0025-5718-07-02056-X
- MathSciNet review: 2373190