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LOCAL AND POINTWISE ERROR ESTIMATES
OF THE LOCAL DISCONTINUOUS GALERKIN METHOD
APPLIED TO THE STOKES PROBLEM

J. GUZMAN

ABSTRACT. We prove local and pointwise error estimates for the local dis-
continuous Galerkin method applied to the Stokes problem in two and three
dimensions. By using techniques originally developed by A. Schatz [Math.
Comp., 67 (1998), 877-899] to prove pointwise estimates for the Laplace equa-
tion, we prove optimal weighted pointwise estimates for both the velocity and
the pressure for domains with smooth boundaries.

1. INTRODUCTION

In this paper, we study the local and pointwise behavior of the Local Discontin-
uous Galerkin (LDG) method for the following problem:

—Ai+Vp=Ff inQ,

(1.1) V-id=g inf),

u©=0 on0f,
where Q C RY (N = 2,3) is bounded and has a smooth boundary. Here i =
(u1,- -+ ,un) represents the velocity of the fluid, p € L3(f2) is the pressure, f =
(f1,-+, fn) is a smooth external force and g € LZ(2) is a smooth function (for

the Stokes problem we take g = 0). The space LZ(€2) consist of functions in L?()
with mean zero.

The LDG method for the Stokes problem was introduced by Cockburn et al. [10;
see the review [8]. The LDG finite dimensional spaces for the both the velocity and
pressure are discontinuous across interelement boundaries. Therefore, the LDG
method allows meshes with hanging nodes and allows flexibility when choosing
the local finite element spaces. Cockburn et al. [6] generalized this method to
Oseen equations. Finally, in [7] the LDG method was extended to the stationary
incompressible Navier-Stokes equation; see also the follow up note [9]. Although
the LDG method considered in [I0] satisfies the incompressibility condition only
weakly, it is shown in [7] that one can enforce exact incompressibility by a simple
element by element post-processing technique.
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Global L? error analysis was performed in [I0] for the LDG method applied to
(CI). In this paper we prove local L? error estimates along with pointwise error
estimates. Roughly speaking, the local L? analysis shows that the error for both
the pressure and the gradient of the velocity measured by the L?(Dy) — norm for
a subdomain Dy C 2 is bounded by the best approximation error in the L?(D;) —
norm for a slightly larger subdomain D plus the error in a weaker norm. These
estimates are very similar to the local error estimates obtained by Arnold and
Liu [2] for conforming mixed methods applied to (ILI)). However, the results in
[2] are for interior subdomains Dy, whereas in this paper we allow Dy to touch
J9). Many of the techniques to prove local error estimates presented in this paper
and in [2] are borrowed from the techniques developed by Nitsche and Schatz [20]
for proving local estimates of conforming finite element methods for the Laplace
equation. However, the pressure term and the incompressibility equation add extra
difficulties when analyzing the Stokes problem. Moreover, the fact that the LDG
spaces are discontinuous and that the primal formulation of the LDG method does
not satisfy the Galerkin orthogonality property adds even more challenges when
analyzing the LDG method for (II]). Local error estimates for the LDG method
applied to Laplace’s equation were carried out by Chen [5]. Later Guzméan [I7]
proved similar results for three DG methods, including the LDG method, in primal
form.

We use the local L? error estimates to prove weighted pointwise estimates. These
pointwise estimates are optimal and describe how the error at a point x depends
on the behavior of the exact solution in regions away from z. Recently, Chen [3]
used the local estimates derived in [2] to prove pointwise estimates of conforming
mixed methods for (II)) on a domain Q with a smooth boundary. Chen makes use
of techniques originally developed by Schatz [21] to prove pointwise estimates for
the Laplace equation. In this paper we also use the techniques found in [21I] and our
results are very similar to the results contained in [3]. However, in order to prove
pointwise estimates Chen assumed local error estimates for subdomains that touch
09 which are not contained in [2]. As mentioned above, in this paper we prove
local estimates for subdomains that touch 92 for the LDG method. Furthermore,
Chen assumed that functions in the finite element subspace for the velocity are zero
on 0F2, but such spaces are difficult to construct for curved edges. Since we are
analyzing the LDG method there is no need to choose subspaces that agree with
the boundary data.

Weighted pointwise estimates have interesting applications. Hoffman et al. [I§]
used the estimates in [21I] to prove that a class of recovered gradient estimators
are asymptotically exact on each element of the underlying mesh provided some
conditions are satisfied. Leykekhman and Wahlbin have extended these results
to parabolic problems. Recently, Schatz [23] used weighted estimates to improve
superconvergence results (see [24]) for meshes that are symmetric with respect to
a point.

To further put our work in perspective, we describe previous work concerning
pointwise error estimates for the Stokes problem. Pointwise error estimates for
conforming mixed methods applied to the Stokes problem was first carried out by
Durén et al. [12]. For a stabilized Petrov-Galerkin mixed method the analysis was
carried out in [T4]. The drawback of these articles is that the analysis is two dimen-
sional and the estimates are sub-optimal by a logarithmic factor for higher order
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elements. Recently, Girault et al. [16] removed the logarithmic factor and extended
the results to three dimensions. In this paper and in [3] the logarithmic factor is
also not present for higher order elements. The proof in [16] uses techniques for
maximum-norm estimates for finite element approximations of the Laplace equa-
tion [27], whereas in this paper and in [3] techniques from [2I] were used. This
allows us to establish a more local dependence of the error on the exact solution
as compared to the results in [16]. However, our results are restricted to domains
with smooth boundaries, whereas the results in [16] hold for polygonal/polyhedral
domains. We use an integral representation of solutions to (II)) and sharp bounds
for the kernels, whereas in [16] an integral representation for the the inverse of the
divergence operator and sharp bounds for that kernel are used; see [15].

Instead of discretizing the viscosity term —Aw with the LDG method one can
discretize this term using methods in [I] to come up with different DG methods for
([@TTD); see [25]. If we use the methods in [I] that are consistent, adjoint consistent
and have bilinear forms that our coercive to discretize the viscosity term of (L),
then we can easily prove similar results for the resulting methods for (LII).

The rest of the paper is organized as follows: In the next section we define the
LDG method and present our main results. Section 3 contains the proofs of the
theorems.

2. THE MAIN RESULTS

2.1. The LDG method. We assume we have a family of triangulations 7; which
fit the boundary of Q exactly, where Q = (J;c,, T. We allow hanging nodes, but
we assume our family of meshes are quasi-uniform and that the elements are shape-
regular. The collection of edges/faces will be denoted by &, = EF U 5}?, where £F
is the set of interior edges/faces and Sff is the set of boundary edges/faces.

The LDG approximations belong to the following spaces:

VE={ve L2 : ¥r € [P(T)N VT € Tp},

£y ={o € [P QYN s glr € [P(T)]VN VT € T},

Qi ={q € L§(Q) : qlr € Pe_y(T) VT € Tp},

QF ={qeL*Q): ¢l € Po_i(T) VT € Tp,}.
Here P;(T') are the set of polynomials of degree less than or equal to ! defined on
T. An arrow above a function means that the function is vector-valued and a line
under the function means that the function is matrix-valued.

To write a compact form of the method we will need to define the jump and
average operators. The jump operator is given by

(¢ ®7) on boundary edges in £F,
(T ©fig+) + (¢~ @fig-) on interior edges in £,

[(pom)] = {

where ¢* denote traces of ¢ on the edge e = IK* N K~ taken from within the
interior of K*. The vector ik is the outward unit vector normal to K. The symbol
® denotes a multiplication operator. The average operator is defined as

¢ on boundary edges in £F,
1(¢T +¢) on interior edges in EF.

{¢}}:{
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We can now define the LDG approximation. To simplify notation we take the
stabilization parameters to be 1 (i.e. ¢11 = dy; = 1 in (2.21) [10]). Since we are
working with quasi-uniform meshes we use h everywhere instead of the local mesh
size.

Find (@p,pn) € th x QF such that

Al ) + BuGpn) = [ Feoda,
Q
(21)  —Bu(lin,q) + Dilpn,a) = /quw ¥(v,q) € V¥ x Q}.
Q
where
Ah(ﬁ,a):/(vha'—g(ﬁ)):(vhﬁ—g )) da +h~! Z/u@ : [V @] ds
Q ey
By (v,q) = /qvh v dr + Z {q}v- 7] ds + Z/qv nids,
gl’ e g}llg e
Z ] ds.

ecEf ¢
For @ € [H} (Q)]V the lifting operator £(@) € X is defined by
/é( adx—Z/[[u@n {c} ds Yo € XF.
Q ec&p

We used the standard notation (V7);; = 0jv; and (V- g); = Zivzl 0j0i;. We also

- N S N .
have 7-7 =), , vin;, (T®M);; =vnjand g : 7 = Zi,j:l 04;Tij. Here Vil is the

piecewise defined function such that V4 = Vu on each element T' € 7},.

By using the lifting operator £ we eliminated the unknown o}, appearing in the
the original LDG method [10]. As a result, the Galerkin orthogonality property is
not satisfied. That is, if (@, p) solves (ITI]), then we have

Ap(@, ) + Bu(#,p) = /f~17d:c+R(a’,17),
Q

22) ~Bu@)+ D) = [gads V()€ HUQ) x IO,
The residual term R(#, ¥) is given by
R(ii,5) = ) / {I(Va) — V@Y : [v®n]ds.
eelp €

Here II is the L? projection into 2’;.

2.2. Sobolev norms. In order to describe the main results we need to introduce
some norms. If Qg C €2, we define our discontinuous Sobolev space as in [3]:

WP (Qo) ={v:ve WP(TNQ), V T €T}
Let Q¢ C 2; then we define the broken norm for r =1 and 1 <p < oo

||U Wl P( Z HV’UHLP(TOQO) + hl_p Z ||[[’U® ﬁ]]“ip(emgo)'
TeT), ecy
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If p = o0, we define

10]lyw2.2= (g) = U V0| (rn00) + A7 sup [[[7@ ]| 1= (enay)-
T€eT, e€Ey

For the pressure we use the following norm for 1 < p < co:

HCIHLP Q) — ||Q||Z£p(go)
b ST A gy + 0 S IHGTHE v ennn
ecEF e€&y,

For r > 1 and 1 < p < oo, we define

||U WIP(Q0) Z ||U||WT P(TNQ)"
TeT,

The case p = oo can be defined similarly. We write H; = W,:’2 for any r > 1. We
will also need to define negative-order Sobolev norms. Let D C Q and ¢ € L?(D);
then we define the H (D) norm as follows:

HqHHq(D) = sup / grdx.
recs(p) Jp
HTHHI(D):l

We present a function space, as in [29], that will let us define a slightly different
negative-order norm. If S € D C Q, let 9(S, D) = dist(9S \ 9Q,90D \ 99). The
space is defined as follows:

CZ(D) ={v e C*: 0 (supp(v), D) > 0}.
The HZ-*(D) norm is defined by

HqHHzl(D) = sup / grdx.
reCX (D) D

HTHHI(D)ZI

Notice that HZ-'(D) and H~'(D) norms coincide if D cc Q.

2.3. Local estimates. For the rest of this paper II will denote the L? projection
into Q’fb, II will denote the L? projection into fo and II the L? projection into Zﬁ.

Theorem 2.1. Suppose that (i, pn) € VE x QF and (@,p) € [HE ()N x L3(Q)
satisfy
Ap(t@ — @, 0) + Bp(V,p —pr) = R(4,7),

(2.3) —Bp(i — tp,q) + Dp(p — pr,q) = 0 v(7,q) € Vi x Q}.
Then for Dy C Dy C Q with 0<(Dg,Dg) =d > 2h,

1@ — @nll 2 (Do) + I[P — Prllz2(py) + (R Z I[[(p —ph)ﬁﬂHZB(emDo))l/Q

ecEf

< C(|[@ —Tal 113 (py) + bl =@z (0 + I =TIl 2 (D)
(i~ TRl 20y + lIp — Tl =1 ()
+Cd71(||ﬁ_ ahHLz(Dd) + Hp - thHgl(Dd))‘
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In these estimates we have the norm H_ ! norm of the pressure appearing in the
right hand side instead of the H~! norm. The H~! norm appears in the estimates
found in [2] since in their analysis only interior subdomains were considered.

2.4. Pointwise estimates. We need to define weighted norms in order to describe
the results of this section. We will use the weight used in [21], 0,(y) =
The weighted norms for 1 < p < oo are given by

Hﬁ”:;‘/lyp(go)’x’s = Z HJ;VﬂlZE/p(TQQO) + hl_p Z HJ;[[??@ ﬁﬂ”ip(emﬂoy
" TET, ey

__h
h+lz—y|"

and for p = o0

_; o -1 R
||’U||W;1'oo(ﬂo),:c,s = ﬁg% HUJSCVUHL”(TQQO) + esélgri h= oz [v® nHHL""(eﬂQO)'

Also,
||q||i}€(90)7w)8 == ||O-QSZQHII),P(€I'TQD)
th Y os gl G emag T D o2 8a}Eaengy):
665}% e€ey

and for p = oo

gl Lo~ (©),2,s = llozallLo(0)-

Now we can state the pointwise error estimate for the velocity.

Theorem 2.2. Suppose (i,p) € [WH(Q)]N x L>®(Q) N L2(Q) and (i, pn) €
VE X QF satisfy @3). Let x € Q and s satisfy 0 < s <k — 1. Then, there ezists a
constant C' independent of x, (i, p), (Un,pr) and h such that

(@ —ap)(z)] < Chlog(1/h)*(||d — ﬁ(ﬁ)HW,},oo(m,w,s + |l = (D) || L2 ().,
+Hoz (Vat — (V)| | L= ()
where §=0if0<s<k—1,ands=1ifs=k—1.

Notice that if & > 2 we can take s = 0 < k — 1 and we get the optimal L>(£2)
found in [I6] for the velocity. But, if we take s > 0, then the error at = depends
much more on the behavior of the exact solution in regions close to x rather than
the behavior of the exact solution in regions far from z. In fact, one can prove error
expansion inequalities; see Theorem 4.1 in [2I] for the corresponding result for the
Laplace equation. If kK = 1, then we are forced to take s = 0 in Theorem In
this case, the logarithmic factor does appear. Also, we see that the estimate is no
longer local. That is, the error of the velocity at the point x depends on the exact
solution equally on all of €; see [I1] for the sharpness of this result for the Laplace
equation.

The pointwise estimate for the pressure is given in the next theorem.

Theorem 2.3. Suppose (i,p) € [WH(Q)N x L>®(Q) N L3(Q) and (in,pn) €
th x QF satisfy @3). Let x € Q and s satisfy 0 < s < k. Then, there ezists a
constant C independent of x, (4, p), (U, pr) and h such that
(p—pr)(@)] < Clog(1/h)* (|| = T(@)|lyy1 0y s + 1P = THP) |12 (2) 5
Hoz (Vi = (V)| | L ()
where s=0if0<s<k, ands=11ifs=k.
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The logarithmic factor will not appear in the estimates for the pressure as long
as we take 0 < s < k which can always be done since k£ > 1. Since we can always
choose 0 < s < k, we see that error of the pressure at the x has more of a dependence
on the behavior of the exact solution near x rather than the behavior of the exact
solution far from x.

The gradient of the velocity error at a point x € Q, |V (& — iy,)(z)|, is bounded
by the right-hand side of the inequality appearing in Theorem We omit the
proof of this result.

3. PrROOFS

Before we prove Theorems 2.1] and 23] we state some preliminary results.
3.1. Preliminary results.

3.1.1. Continuity of bilinear forms. We can easily prove the following bound for
our lifting operator. For any @ € [W,"*(Q)]V we have

L@ lin@y < RS 7@ A1 ) 7.
ecép

Now it easily follows that
Ap(t, 7) < C‘|ﬁ||W}1‘l(Q)||ﬁHW}1=T(Q)
where 7 + 1 = 1. In fact, one has
Ap(@, ) < Cllally 1) 4 —lTllwir @)z
We also have

Bh(ﬁv Q) < C||17| |W}1vl(Q)’w,7s||Q||L2(Q),z,5'

3.1.2. Regularity and global error estimates. The following result is standard; see
[28].

Proposition 3.1. If f € [H'(Q)]N and g € H*(Q) N L2(Q) with | > —1, then
there exists a unique solution (i,p) € H'*t2 x H*1(Q) of (I). Furthermore, the
following bound holds:
]| 2y + Pl 41 ) < CUf ar ) + gl m@))-
Global error estimates were obtained in [I0]. Here we state the result in a slightly

different form.

Proposition 3.2. Let (i@, p) solve (L)) and let (@pn,pr) be the LDG approzimation
defined by [Z1)); then
[V (@ — n)||z2() + [P — prllze o)

<C([V(a— ﬁ(ﬁ))HLZ(Q) + [lp — T(p)|| 2 ()
+C(||Vu — I(V4)|| 12(q) + R VT = IL(VE)|| 51 (a))-
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3.1.3. Approzimation. We start by stating well-known trace inequalities. Let e be
an face of T' € 7. Then, for 1 < p < oo, we have

1 _1
(3.1) o Lo(e) < C(R™7 ||| Loy + B 77 |dlwrn(r)).
If we restrict ¢ to Py(T), then
(3.2) 16llwr.ecry < CRES=F 12916 |woe ),
_1
(3.3) l|llz, ) < Ch™ 7|18, (1)

where C' does not depend on ¢, h,e, or T. Here 1 <t < s<ooand 0 < _l < q. The
following is a standard elementwise approximation result. Let v € W}'P(Q) with
0<i<j<k-—1. Then,
(3.4) lo = IL(v)[[wiwnr) < CW " olwiny VI € T,
where C' does not depend on v, h, or T'.

The same result holds for II and II, but in these cases 0 < ¢ < j < k. We

now define a standard negative-order Sobolev norm. The following inequalities are
similar to Lemma 2.2 in [17].

Lemma 3.3. Let x € P._1(T) and w be a smooth function. Suppose there exist
constants C >0 and d > h, ||Dlw||Loo(Q) <Cd! forl=0,1,--- ,r+ 1. Then, for
r>2

C _ _
(3.5a) (WXl (ry < =g (7 loxllar )+ d72 x|z ),
c _
(3.5b) ol arery < =5 (@M I ) + A2 Iz,
and forr =1
(3.5¢) WXl () < Cd™H|wx |21y,
(3.5d) lwx| gy < Cd™ x|l L2 r)-

Here C is independent of w, x, T, and h.
Now we state a super-approximation result (see [I7]) which easily follows from
B4) and (B5a) if we set r — 1 = k.
Lemma 3.4. Let 0~ (Dyg, Dq) = d > 2h, where w € C=(Dy). Suppose ||D'w||(s,)
<Cd7 forl=0,1,--- ,k +2. Then, for all ¥ € V}
1 R L = 9.
Ellw% — I(w?)||22(py) + ||w?T — ()| 1 (Do)
< Ch(d™ M|l 2 gy + 42 10] (D))
where C is independent of U and w.
We will also need the following superapproximation result.

Lemma 3.5. Let w be as in Lemma B4l Then, for all p € Qp
1
EHWZP — I(W’p)llz2 (Do) + VA (w’p = T (w?))[| L2(Dy)

_ h
< Cd™ (Jlwpll2(p,) + a||p||L2(Dd))?
where C' is independent of h, p and w.



POINTWISE ESTIMATES OF LDG FOR STOKES 1301

3.2. Proof of Theorem [2.71 With a covering argument, as was used in [22],
it is enough to show Theorem 2. with Dy and Dy replaced with Sy and Sag,
respectively. Here Sy = By N Q and Soy = Bog N and By C Byy are concentric
balls with common center in 2 and of radius d and 2d, respectively. We prove this
result in several steps.

3.2.1. Step 1: Reduce to weighted stability estimates.
Lemma 3.6. Let w € C2(S34/2) with w = 1 on Sq and |D'w|~ < Cd™! for
1=1,2,...,k+2. Then Theorem 21l is implied by the following inequality:
lwiin || () + llwpnllL2() + Dn(wpn, wpn)
< O]l g3 (s00) + Pl 2 (500) + 1P L2 (550))
(3.6) +CA ([l £2(520) + P8l 11 500

—

Proof. Since @ — @), = (@ — (@) — (@, — (@), Theorem 21l follows from
1@ — @l s + 11 = Pall2csa) + (b D I — )l 72 (ens,)
ecEF
< O]l 3 (500) + Pl 2 (500) + 1P 22 (550))

+Cd™ (]| 12(850) + |IP

|12 (500)
+Od™H(||@ — [ 2 (550) + 1P = Prll =1 (5,0))-
By the triangle inequality this in turn follows from
anlleg s+ pallzecsy + (b Y il e ens,))
ecEf
< Ol g (850) + Pl 2 (500) + 1Pl 22 (550))
+Od (|l@nllL2(550) + P01 =1 (500

Since w =1 on S, we have

lanllmy s + 1pallzacsy + (0 Y- NIpnallGeens,)

665%
< |wiin|lmp (s4) + llwpnllrz(s,) + Dr(wpn, wph).
Lemma now follows. U

3.2.2. Step 2: Weighted stability estimates for the pressure. We first estimate the
term ||wpn||r2(s,) in terms of the other terms in the right-hand side of (3.8).

Lemma 3.7. Let w be as in Lemma [B.6]; then
||th\|2L2(szd) < CHWﬁhH?{,{(szd) + CDp(wph; wph)
+C(|WH§I,{(5M) + h||17\|§{g(52d) + ||p||iﬁ(52d))
+Cd 2 (|[anl[72 s, + th”?q;l(szd))‘

Proof. We choose a domain §2d such that S5, /2 C §2d C S9q and 85’2d smooth.
By the triangle inequality we have
llwpnllz2(s2a) = llwpnll 25,0 < llwpn — aveg,, (Wpn)ll 125,

(3.7)
+ llavgs,, (Wpr)ll L2 (5,0



1302 J. GUZMAN

where avgg, (wpn) = A |szd wpndz. Notice that

g, | < = ollmr g 1P =2 50y < ClS2al ™ 2d bl =1 5,

1
[Saal
Hence, we get

C
(3.8) Havggw(wph)Hy(de) < EthHHzl(gw).

It is well known that one can find a function @ € [H'(S2q)]" (see [12]) that
satisfies
=V ¥ =wpy —avgg, (wpn), in Sod,
0, on 8§2d,

<y
I

and
(3.9) VU] 2(5,,) < Cllwpn — avgg, (wpn)ll12(5,,)-

By a scaling argument C is independent of d. We define v" on all of Q2 by defining
it to be zero outside of Sa4.
By the definition of By, we have

|lwpn — angu(th)”iz(gzd) = Bj,(V,wpn — avgg, (wpn)).
Using integration by parts we can rewrite B(,-) as
By(v,q) = / U- Vg de + Z / qri] - {U} ds.
eeEf
Hence, By (0,¢) =0 if ¢ is a constant. Therefore,
lopr — aves,, (@)l 2as,,, = Bald.wm)

By(7 — 1(), wpr) + By (L(7), wpn).

The first term is

Bu(0=Ti@wm) = [ (7T Valopn)do
=3 [4@-1i@)} - lopnilds.
6651 e

It easily follows using 1)), B4) and B.3)) that

=3 [ T@)} - lopniilds < ellwpn — aves,, (wpn) s s,

ecEF €
C
+ ?Dh(wph, wph)-
Also, using (34)) and (39), we have

[ (@=1(@) - Vatom) = [ (7~ 10(@) - Valopn ~ opn))da
Q Q

Ch?
< ¢||lwpn — ansm(wPh)HLz(de) +—5 ed? ||ph||L2(Szd)’
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where we also used
C
IVa(wpn =1 (wpr)ll 25,0 < lIPnll 25,0
which follows from ([3.4]) and (B.5b) (k > 2) or B5d) (k = 1).

Therefore, after applying inverse estimates we see that
|lwpn, — avgs,, (wph)‘|2L2(§2d) < 2¢||lwpn — avegs,, (th)Hiz (S24)
C
+?Dh(wPh7wPh) ] th||2 (%ha)
+ By, (1(7), wpn).-
A simple exercise shows that

By (Ti(#), wpn) = BIL(5), pr) + / PV (w) - Ti(7).

Clearly,
/QphV(w)-ﬁ(ﬁ):/phV( ) - ((7) — )dx+/phV(w)-17dx.

Using (34), (39) and inverse estimates we get that

L c
/Q V(W) - (1) = D)o < ellwpn — aves,, (@on)|[2ags, ) + 5198l 225,

Also, we have
[ p¥@) e < IV Tl g llonllz 5,
< ||VUHL2(S2dehHH (824)

¢ 2
< el|lwpn — anSQd(wPh)HLz(gzd) + ?th”H—l(gu)'

Here we used Poincare’s inequality [|7]]2(g,,) < Cd||V]|125,,)-
Therefore,

(3.10) [lwpn — aveg,, (wpn)ll]as,,, < dellwpn —aves,, (Wpn)ll]2 s,

¢ 2
+$||ph||H21(de)
C =
(3.11) +—Dn(wpn:wpn) + Br(wIl(©), p)-

We are left to bound By (wIl(%), pp). To this end, we have by (Z3)

—

Bu(wIl(#),pn) = Bu(H(wIi(D)),pn) + Bn(wI(¥) — H(wII(¥)), pr)
= Ap(@, T(wI

(3.12) Ap(ih, wII

—Ap (dp,w

6
(3.13) = Y I
=1
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where
Ji = Ap(@, T(wI(9))), Jo = By (TH(wIi(7)), p),
Js = Ap(@h, wIl(7) — D(WIL(7))), J4 = Bu(wI(7) — T(WIL(D)), pr),
Js = —Ap (i, WIL (D)), Jo = —R(@, TI(wII(D))).

By the continuity of A; and Bj;, we have
il + 12| < O 12 5,00 (112 5000 + 1P]122 5000
Using the triangle inequality we get
@@y (5, < WD) = WIE@)]| 1 (5,
H[WTL(D) = @] g2 (5, + 98] 11 (350)-

It is not difficult to show using approximation properties of f[, Poincare’s inequality
and the fact that HDleLw Soa) < Cd~! that

W) = T (@)l (3, + W) = w3l 1y 5,0y < OV 2(5,0)-
Moreover, using that the jumps of ¢ are zero and Poincare’s inequality we have
HW’EHH}L(EQd) = ||V(WU)||L2(SM) = C||V?7|\L2(52d)
Therefore, after using ([(3.9) we get
HH(WHW))HHl(SZd) < Cllwpn — ansM(wPh)”LZ(SM)
Hence,
C

‘J1|+|J2| <5||wph_anSZd(th)||L2(S2d)+ (||UH H} (S24) +||p||L2 (824) )-

By the continuity of Ay,
[ sl < Nunll g (5,0 [1WTH(@) = THWIH@)] 11 (5,9
Using ([34) and (3.5h) we have
||wI(¥) = TH(WIH(D)[| 13 (5,

(3.14)

IN

Ch(d ™ [VaI(D)][ 25, + d* D) lI2(5,,)

Ch._
IVl L2350,

IN

where in the last inequality we used the stability of I1 and Poincare’s inequality.
Hence, using inverse estimates and Young’s inequality we have

C
< ellwmn — aves, @m0l Ba s, + il

One can easily show using the Cauchy-Schwarz inequality, (3] and (314 that

=Y [ {wli(®) — H(wIL(5)) } - [paii]ds

ecEL

Ju

IN

2 c 2
6||wPh - anEQd(wPh)||L2(§2d) + EHPhHH—l(gZd)-
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To handle the next term we first use integration by parts to get

Js = An(win, @) + /Q V(w) @ iy : (VIL(#)) — L((7))de

+ [ Vi + (i) — (T
/ ViI(T) : (L(wily) — wL(iy))d.
It is simple to see using the continuity of A;, properties of II and B3) that
An(witn, 1(@) < dlopn — avgg,, (wpn)ll3s 5, )

S 2
+;\|W“h||H}L(§2d)'

Since [U] = 0 we have

IL0)][72 ) < hZH Al 72 )
e€ly,
Z—ZH it - 8) @ ii]l[72(e) < CllvllEn o)
eelp

Hence, using this and (39)
[ V)@ s (V) - LA < dlomn - aveg, (mlBags,,
o

C N 2
+$||Uh|‘1;2(9);
where we also used that
IV (D) r20) < Cllolla 0)-
Using the definition of the II and £ we have

/ Vaun : (L@IH(@))) — wLT(5))de
_ Z / [07 @ 7] : {wVaun — I(wVhus) Yda

e€ly

= [0 — %) @] : fwVaun — L(wViup)}de.
eely

Therefore, using ([3.5b]) or (35d) and (33) we get
/ Voun : (LT())) — wL (T () dz

h
< Cllwpn — anSM(wph)HLQ(SM)EHuh”H}L(Sm)

2 ¢ 2
< 6||(")ph - an§2d(wP}l)||L2(§2d) + EHU}LHL%S’M)'
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In a similar fashion we can show

/ V(D) 1 (L(wily) — wL(iy))dx

2 ¢ 2

< 6||(")ph - anS2d(wph)||L2(§2d) + EHU}IHL%S’Q@'
Hence,

[J5l < dellwpn — avgg,, (wpn)ll72 g,

o2
+ d2||UhHL2(S2d) :kuhHH}L(S’Zd).

One can show using () and approximation properties II that

Ch?,
el < ellwpn — aveg,, @mi)l Bags, ) + —— s,

Hence, combining the bounds for the J;’s and using (B.I3)) we have that
By (wI(¥),pn) < 8ellwpn — aveg,, (pn)ll72 s, )
-
Yl s, + Dnlopn,wm)
C

+— (Hu||H1(52d)+||p||L2(52d)+h2HUHH2(5 d))

C 2
(3.15) +6 (”“hHLz SZd)"’”thH—l(gzd))'

Finally, combining (IH), BII), (8) and B7) and taking e small enough
proves Lemma 3.7 O

3.2.3. Step 8: Weighted stability estimates for the velocity.
Lemma 3.8. For every 1 > 6 > 0 we have
||Wﬁh|\?{,{(sd) + Dy (wpn,wpn) < 6llwpnllfa(s,)
S0y 5,0+ M 5,00 + 121 5,0
b (il sy + l19nl s 530
Proof. In order to prove the result we use a stability result concerning only Aj

bilinear form. The proof is almost identical to the proof of a similar inequality in
[17] for the LDG method applied to Laplace’s equation; see (3.3) in [17].

Proposition 3.9. There exists a fixred number C; > 1 such that

(3.16) lwiinl %1 (5,4) < C1Aw(T@n, w?in) + Crd 2| || 2(s,,)-
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Therefore, we only need to find a bound for Ay, (i, w?d,). To this end, we use

23) to write

Ap iy, win)

= Ay (i, w2y — (w?Tn)) + Ap(up, D))
= Ay (i, w2, — (W) + Ap (@, (w?@n)) + Bp (H(w?ds), p)

6
(3.17) => 1

where
I = Ap(i, 20, — (@), L = Ap(@, (w?d)),
I3 = By, (T (w?@), p), Iy = — By (IL(w2 @) — wiin, pr),
Is = — By (Wi, pn), Is = —R(, TH(w?iy)).

Here we used that (Z3) holds if QF is replaced with QF since By, (7,¢) = 0 for
constant c.
By the continuity of A and Lemma [3.4] we see that

I

IN

. 1, .
Ch\|Uh||H,{(s3d/2)(E||wuh|\H}L(sm) + ﬁ”uhﬂm(sm)

IN

. -
51”‘”“!1”?1,11(5%) + Wﬂuhﬂiz(smy

In the last step we used the inverse estimate hl|tn|m} (s,,,,) < [|Unllz2(s,4)- Here
§1 is a small positive number that will be chosen later.
By the continuity of Ay, the stability of II and Young’s inequality we have

" c .. c .
I < 01 [|winl| (5,0 + EHUH?{}L(SM) + WH%II%Z(M)-

By applying Holder’s inequality, the stability of I1 and Lemma 3.4 we can easily
show that

C C
- 012 2 =112
Is < oullwinl by (5,0 + 5, IIPILz (5,0 T 5 2 10012205200
The following term can be written as
I4 = — Z {ﬁ(wzﬂ'h) — wzﬁ'h}} . thﬁ]]
ecEL
By applying the Cauchy-Schwarz inequality, (B.1]), and ([B2)),

2

C — 5 . = 5 .
I < ﬁ||Ph||L2(s2d>(|\H(w2Uh) — W?iln|12(850) + PIVRIL(W?dR) — w?iR)| £2(550))-

By applying Lemma [3.4] inverse estimates and Young’s inequality we get

I, < 51||Wﬁh”%11(52d)+Cd72||ﬁh‘|2L2(Szd)

1.
+C(1 + a)d 2[1pn -1 (500
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Using the product rule we get

I; = —Bh(ﬁh,wzph) — 2/ wppip - V(w) dx
Q

= —By(iip, w’pn — N(w’pn)) — Br(in, (W’ pp))
—2/ wpp iy - V(w) dx.
Q
By using Lemma [3.0] and inverse estimates we get

. C
— By (i, w’pr — (w’pn)) < 0illwpnllFe(s,,) + ﬁHPthw—l(szd)
coo1
+a 6_1)||uh”L2(Szd)'

It easily follows that
- 2 C a2
[ wmniin- V@) da < 81lloml B s, + 5 5117l B s
Using (2.3) we have
— B (i, T(w?pp)) B (@, (w?pn)) — Du(pn — p, T(wp))
— By, (@, T(w?pn)) — Di(pn — p, T(w’pn))
= —Bu(@ (w’pn)) — Du(pn,w’pn)
—Di(pn, I(w?pn) — w?pn) + D (p, I(w?py)).
By using inverse estimates and stability of the L? projection II, we have

. c .
— By (@, (w?pp)) < 01llwpnl|Fz(s,,) + a”uhH%[}ll(SQd)

and

Ch _
Dy (p, I(w?pn)) < d1llwpnllZ2(s,) + 5= D Pl 22 (ens,0)-

01 .
e€ly

If we use Lemma and inverse estimates we get

C _
—Dh(ph, (w?pr) — w’pn) < 81llwpnllZz(s,,) + 21+ Ollpall -1 (Sz0)-
Hence,

Is; < *Dh(thvah)+451||wph”%2(52d)
C o
+E(|\P|\igy(sw) + H“Hiz,g(sm))

—O —
+51d2 (||th%{—1(S2d) + ||Uh||%2(S2d))’

where we used that 6, < 1.
Finally, by applying Lemma [3.4] we can show

Iy < &lwinlf g
c . . TN
+ 511l 725, T CP* (140 a2 (s,0)-

Therefore, by combining (3I6), (B17), the bounds for I;, j =1,---,6, and choos-
ing &7 so that §;C; < 1/2 proves Lemma [3.8 where we let § = 204, C;. O
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3.2.4. Step 4: Completion of the proof. By combining Lemmas [B.8 and [B.7] and
taking § sufficiently small we get

HwahH%I}ll(Sd) + Dh(wpmwl)h)
012 =2 2
< Cllllly (s, + Pl (5,0 F 11Pl2550))
C, .
Uz s, + Pally s, )

Finally, by combining this inequality with Lemma 3.7 we get (3.6) and hence
completes the proof of Theorem 211

3.3. Proof of Theorem

3.3.1. Step 1: Reduce to error estimates for approximate Greens function.

Lemma 3.10. Let x € T, where T, € Ty, and let § € [C2°(T,)|N with ||| L2(r,) =
h=N/2_ Then, Theorem 22 follows from

15 = Fllw 21 () e,—s + 1A = AnllLr(0),0,—s < log(1/h)°h,

where (§,\) (with [, X dz =0) solve

—AG+VA = ],
v.§ =0
(3.18) i
and (G, An) € ‘7;{6 x QF satisfy
AnGns ©) + BB, 0) = / 7 dda,
Q
(3.19) —By(Gn,q) + Dn(An,q) = 0 V(7 q) € VE x QF.

Proof. By the triangle inequality and inverse estimates
(@ — i) (2)| < |(if = (D)) ()| + Ch~N/?||T(@d) = iin] | 2 -
By the triangle inequality and Holder’s inequality, we have
(@ — i) ()| < O = (@) () + OB = il 2.

Using the fact that 1/2 < o, (y) for any y € T, we have

—
S
|
gl

w)(@)] < Ol () 4. + OB N2 lu — unl| L2 cr,).

We will use the fact that

h= NP — || 2z, = sup /(12’—17h) - p dz.
PECEC (Tx) 9]
1511 2 gy =h N2
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For a fix g let (¢, \) and (gh, An) be the solutions of (BI8) and BI9]), respectively.
By using the consistency result for the LDG method and [23]) we have

/ﬁ-(ﬁ—ah)dx — Ap(ii — @n,g) + Byl — i, \) — R(G. il — @)
Q

= Ap(t@—tn,g— gn) — B(Gn,p — pr) + R(d, Gn)

, U
= Ap(@—Up,g— gn) + Bp(d — tin, A — Ap) — R(G, 4 — i)
+B(G — Gn,p — pn) — Dn(A = A, p — pr) + R(4, Gn)
= Ap(@—Ti(@),§ — G) + Bu(il — TL(@), A = An)
—R(§, @ —Ti(@)) + B(7 — G, p — 11(p))
=Di(A = An,p —11(p)) + R(4, Gi)-

Hence, by the continuity of our bilinear forms and the definition of R(-,:) we
have

< O = @)y~ .0 + 10 (Vi = (V30| =0
+lp = (P)[| L= (2),2,5)
(19 = Gullwri ) ms + 1 Y 0w VG = IV I o)
e€&y
A = AnllLr(9),2,-s)-
Here we also used that R(4, §,) = R(, gr, — §) since the jumps of § are zero.

Theorem will follow if we can show

G = Fnllwr1(q)e—s Th > o (VG = IV Lo + 1A = Ml @), —s
eelyp

< C'log(1/h)*h.

By using the approximation properties of I, global regularity bounds and Propo-
sition [3.14 one can show

(3.20) hy oy VG = IV o) < Clog(1/h)°h.
ecéy,
We leave the details to the reader. This completes the proof of LemmaBI0l O
3.3.2. Step 2: Dyadic decomposition and error estimates for approximate Greens
functions. Let
dj =277 for j=0,1,2,...
and set

Q, = {yEQ:dj+1<|yf:v|<dj},

2

= {yEQ:dj+2< |y—$| <dj,1},

2
&

= {yGQ:dj+3< |y7£E| <dj_2},
= {yeQ:djrs <l|y—z|[<dj-s},

2
[ D AN
N w
z =
|

2

= {yEQ:dj+5 < |y—I| <dj,4}.
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With this notation we can state two important lemmas. The proofs of these results
can be found in the next section.

Lemma 3.11. If d; > 8h, then
11— Gullm ;) + A = Anllz2(o;)
< ChPd TN (|G - Gull 2 ey + ClIA = Anll =1 qem) ).
Lemma 3.12. Ifd; > 8h, then
g — ﬁhHB(QE_U) +[|A = >\h||H;1(Q§_1))
< Chkdjl‘_k_N/Q(”g* 97LHW,1»1(Q) + 1A= )\hHL}L(Q))

+Ch(”g thHl(Q(‘l)) + ||)‘ )‘hHL2(Q<4))) + CIOg( ) hk+1d1 Nz k

>

The main result of this section is the following lemma.
Lemma 3.13. Let (§,\) and (Gn, An) be as in Lemma BI0:
g = Gnllw 1 (@),2,—s 1A= Anllzr @) 0,—s < log(1/h)"h

Proof. Let M be a real number to be determined later and let J be an integer such
that dy = Mh. Set = ¢ — g;, and 7 = A — \p,. Notice that

HElwit@)e—s Tl @e-s < HEHWh HSarm)ei—s T ITILE Sarn) s

+Z (1E w2 0,,0,—s + 7123 0,0, —5):

Without loss of generality we have assumed that diam(€2) < 1. Since o, *(2) < C;fij
for z € €, using the fact that meas(Q;) < Cd;-v and applying Holder’s inequality

we can show
= N/2+s)
1B st e+ 7l s < CY2H BB 30y + 17l 12.0))-

One also has

1Bl suriens + Pllnam < CMY2E 2By 500 + 1Pl 2 5000))
< CMNPERNERY (|l 2 ) + A0 o)
< CMN/2+sth/2HﬁHL2(Q) < ChMN/2+S.

Here we used global error estimates and regularity results.
Therefore, we have

(3.21) 1B 1@ oo + 17l (00ms < M504 o,

where
N/2
n= Zd PERWE k2 gy + P12 0))-

If we apply Lemma B:I:[L we get

n< ChOk —1—s) +chN/2 R (IE o gy + Iz o0
7=0
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where
J
SO
7=0
Now applying Lemma [3.12], we have

N/2— 1+s
Zd / HEHL (Q(l)) + ||T||H 1(9(1)))
< CO(k - 5)(||EHW;’1(Q) + 7|y o))
J
N/2—145,1—s/|| 5
+Cz;)dj / shl (HE|‘H11;(Q§'4)) + ||T||L,21(Q;4)))
j:
< OOk = s)([|Elly11q) + Il @)

N/2—145; 1—s/1| 2 C
+Ody TR B g s + 117 23 5200) + 377
< CO(k - 8)(||E_‘,HW;’1(Q) +Irlley @)

C
ChMN/?=1s 4 —p
+ + =0

Therefore,
n < ChO(k—1—5)+COk—s)(||Elly11 ) + lIrllzi@)
C
MN/271+Sh ~n
+ + 77
By Choosing M sufficiently large we have
n<ChO(k—1-s)+COk - 5)(||EHW,}1(Q) + 11l Ly () + MYV,
Substituting this bound into ([B2Z1I]), we have
1Bl ye—s + ITllct@e—s < CMN*h 4 ChO(k —1 - 5)
(3.22) +CO(k — 5)(||E||W;~1(Q) +Irllzy ))-
In particular, we see that
1E i) + Il < CMN?Hh 4 ChO(k - 1)
+COk = (Bl + Il 23 0)-
Since J < log(), we obtain

0 1 if a =
@(a)gc{l (%) fa=0,

ao(l) .
M~ a% if a>0.

Hence, by choosing M large enough so that CO(k) < 1/2, we get

||EHW,}1(Q) +Irllzy @) < CMN/2+sph 4 Che(k —1).
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By this inequality and ([3:22]), we have
1Bl e + 171123 0
< COMN?43h 4 ChO(k —1 — s) + ChO(k — 5)O(k — 1)
1.
< Chlog(+)®
< Chlog(3)",
which proves Lemma [3.131 O

3.3.3. Step 3: Proof of Lemmas [B11] and BI2l In order to complete the proof of
Theorem it remains to prove Lemmas B.I1] and BI21 We first prove Lemma
B.11

Proof. From Theorem 2.I] and approximation properties we get
11— Gullai ;) + 1A = Anllzzo,)
< Chk(\§|Hk+1(Q;1>) + A e )
+Cd; (|| - Gnllzacony + 1A = >\hHH;1(Q]1))~

We need only to approximate \g\Hk+1(Q(2>) + ‘)\|Hk(Q(.2))' In order to do so we will
J J

use a Greens function representation of § and A. The result is contained in [26],
Theorem 1.1.

Proposition 3.14. Let (7,q) (with [, q dx =0) solve
—Av+Vg=m inf),
V-d=r infQ,
7=0 ondf,

with m € [L2(Q)]N and r € H' () with [, rdez = 0. Then, the pair (U,q) have the
following representations:

o) = [ (Glay)its) + Fo9)r) + Do) Vo) dy
and
q(z) = /Q(ﬁ(x,y) i(y) + Az, y)r(y) + E(z,y) - Vr(y))dy.
Furthermore, for 1 <i,j <N
DED}Gy(.0)| € ey Jor N =2+l +13] >0
G,y (e.y)| < CQ1 +1og<ﬁ>>, for N —2+]al + 8] =0,
C

B, —
|Dy Dy Hi(x,y)| < o — y[N-THB for N =2+ |al + 8] > 0.
The components of\I_} and I' have the same bounds as the components of G. A and

the components off have the same bounds as the components of H.
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Applying Proposition B.14] and using the fact that g has support in T, and that

d; > 8h we get for z € Q;l) and |B|=k+1

C C
|Dl gy (2)] + | DPlga(2)] < W”ﬁ”Ll(Tm) < L
J J

Hence,

- C
191 01000y = TN
j

Similarly, we can show that
C
|)‘|Hk(9§1>) < m
J
This completes the proof of Lemma .11 O

Now we prove Lemma [3.12]

Proof. We first prove the bound for ||g — gnll, . . To this end, set E = § — gn

@)
and notice that

E 1y = sup E gda.
|| ||L2(Qj1) deloge (@I le)

15112 gy =1
Let ¢ € [C2()]N with H(EHLz(Q) =1 and (¢, 0) solve
~AY+VO=¢ inf,
V. 1; =0 1in{,

=0 ondf.
We have

- =

Aﬁam::m@®+m@wfmum

) + Du(A = An, 0 — TI(6))
~R(¥, E) + R(§,Ti(¥)).

If S C Q, we define Aj, g to be the terms of A;, with integration restricted to S.
In a similar fashion we define the restrictions of By, D and R.
Hence,

/E.q's’dx =1+ 1,
Q
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where
L = 4, Q® (¢ —Ti(¢), E) + Bh,%s) (¢ —Ti(¢), A — An)
+Bh 0@ )(E,0 —T1(0)) + Dh)QE_S) (A= An, 0 —T1(0))
o (0. E) + R (3.T1())
and
L= Ay gee @ —T(0).E) + B, g go (6 = T(), A = )
+B,, o\0® (E,0 —11(9)) + Dy, oo (A = An, 0~ TI(6)

RQ\Q(3) (wa ) + RQ\QEQ) (gv H(w))
From local continuity properties of our bilinear operators we have

L CQIF Ty oy + (0 X VT = IUVD I, o)

e
+||9*H(9)||L}21(Q§_4)))
< ChQ(|lla2i) + M7 @)
< ChQ,
where
Q1= (HEHH;L(QE_@) (R 1§V - H(VQ)B’HLQ ena®) 24N - Anllz Q<4)))

e€&y
We can easily show using approximation properties of II and Proposition B.14] that
k j1-N/2—k
WY VG~ VDM o)) < CHEG N2,
ecéy,

Hence,
I, < CRFHLg-N/2—k Ch(HEHHi(Q;@) 112 = Al o))
For I we have

I, < CQ2(||1E - ﬁ(’@[_;) | ‘Wi»W(Q\QgF")) ||V’§E - E(V/(E) | |Loo(Q\Q;3))

"—H‘9 - H(9>||L}OLO(Q\Q§3>))
& -
< Ch Q2(Hw‘|wk+1,m(g\922)) + HQHWk,oc(Q\Q;?)))v
where
Q2= ||EHW}1’1(Q\Q§3)) + ||)‘ - )‘hHL}L(Q\Qf)) +h Z H{{v.&_H(v§)}}|‘L1(emQ\Q§3))-

ecéy,

If we use (B20) we get
Q2 < ||E||W;vl(g\9§3)) + A - AhHL}IL(Q\Qyﬂ) + IOg(l/h)g'

Using Proposition B4 along with the fact that ¢ has support in Qﬁl) we can easily
show

o 1-N/2—k | 7 1-N/2—k
11l ssr.0e n0®) + 1Ol < Oy~ 2 7M1l 12y < O~
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Hence, we have shown that

- 1=-N/2—k ||~
1Bl ooy da < CRAT 2R (G = Gillwz @) + 1A = Mlliy @)
15 1-N/2—k
(3.23) +Clog(5) hFHL T NEE
Now we prove the bound for ||\ — >‘h||H—1(Q<”)' Let » = XA — A, and notice that
< J
7]l =1 gy = sup / rydx.
HZN(QSY) Jeoz @) oV

H’YHHI(le)):l

Let v € C’ZO(Q;D) with |7/l g =1 and let (@, ¢) with ([, ¢ dz = 0) solve

o)
A +Vg=0 inQ,

(3.24) V- =7 —avgg(y) in{,

w=0 on .

By the consistency result for the LDG method we have

/Qr'y de = /Qr('y — avgg(y))dx = By (W, )
By,

Following a similar argument as was done to bound ||E||, , (o) we can show
i

/7"7 dr
Q

< CR(|IB]| gy 0 + 1A = An + ORI N2

(O 22 00))
+ Ohk(| || ‘Wk+1,oc(Q\Q§2)) + Ilq| ‘Wk,oo(Q\Qg_z)))

)*h).

==

X(HEHW;I(Q\Q;B)) + ||)\ — )\hHL}l(Q\Qgg')) + IOg(
The proof will be complete once we show that

- 1-N/2—k
(3‘25) ||w||Wk+1,oc(Q\Q§_2)) + HqHWk,oo(Q\inQ)) < Cdj .

We would easily be able to show this inequality using the Greens function rep-
resentation of (w,q) if avgg(y) was not present in equation ([B24). We have to
perform an intermediate step since avgq () does not have support in Q;l). In par-
ticular, we need the following Schauder estimate which follows from (1.5) and (4.5)
in [26].
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Proposition 3.15. Let 0 < o < 1 and let (W, q) satisfy
AT+ Vp=0 1inQ,
V9= inQ,
v=m on S
Then, for every x € Q and d > 0 we have the following bound:
[DE(a)| + | DFp(z)| < Cd*([Bluaane + [Ailk+1,0,5.000)
+Cd™ |3 oo (By00) + Cd™¥([p| L= (84002

where By is the ball centered at x with radius d. Here C' is independent of x and
d. The Holder seminorm [flk.a.s is given by

D -D
Blios = Blwims + 3 sup 1270 = DWW

— [e%
In‘:l OB’yGS “/I" y|

Hence, using Proposition we have for any x € Q\Q;z)
- —(k+1) ) ~ _
|DF ()| + |DRq(e)| < Cdy "4 |poes,, a) + Oy Fllallze sy, ),

where S, is the intersection of 2 with the ball centered at x with radius d. Here
we used the fact that v has support in Q;l) and that the seminorms of the constant
avgq (y) are zero.

In fact, since (w, q) where @ = u_)'favgsdj/2 (W) satisfies (3.24]) with the boundary

condition @ = —avgs, (W) instead of zero, one has by Proposition B.13]
J
~ —(k+1) ) & —k
IDF ()| + [Drq()| < Cdy | s, o)+ Cdy Ml s, )
<

k(o —k
Cd; "IVl Lo (s, 1) + Cdy " llal Lo (54, 2)-
Here we used that and H@HLW(Sd.m) < Od;||Vid|[ o (s, ,,)- One can easily show
using the Cauchy-Schwarz inequality and Poincare’s inequality that
avgg(y) < 0dY/* T

If we use this inequality and Proposition [3.14], we have

_ . _ 1-N/2—k
(3.26) d; kHVwHLoo(SdW) +d; k||q||Lm(de/2) < Cd, 2=k
Therefore, we have have shown ([B.25]). This completes the proof of LemmaBI12 O
3.4. Proof of Theorem [2.31

Proof. Using an argument similar to the argument used in Theorem [Z2] we have
|(p —pn)(x)] < Cllp — H(P)||L;C(Q),z,s + Ch_N/Q_lHP _ph”H—l(Tz)a
where x € T, Ty, € T,. We know that

N2 p — pul |- (7)) = sup / (p — pn)m dz.
meCe (Ty) Ty
Hmll g1 (g y=h~N/271
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Let m € CZ° with |[|m|[g1(q) = h=N/2-1 and let (g, A) (with Jo A =0) solve

—AG+V() = 0,
v; = m—avgg(m),
g = o.

Ah(.é'ha 17) + Bh(U7 5‘h) = 0)
By(Gn ) + Da(Ang) = /Q (m—avgo(m))g  V(i.q) € V¥ x QL.

Then, by the consistency result of the LDG method and (Z3]) we have

/Tw(pph)m dv = /Q(pfph)m dw:/ﬂ(pfph)(m*avgg(m)) dx

= —Bu(d.p—pn)
= —Bu(§— Gnp — D) + Ap(@ — i, Gn) — R(T, gp)
= —Bu(7— Gn.p —p1) — An(@ — . G — Gn)
— By (@ — @in, \) — R(@, §n) + R(G, @ — @)
= —Bu(d— Gn.p — ) — An(§ — Gn, T — @)
—By (@@ — @in, A — M) — Di(p — pny An)

=

G—Gnp— 1) — An(g — Gn, T — )

il — ilp, A = An) + Du(p — prs A — An)
—R(il, gn) + R(, @ — i)

= —Bu(g— Gn.p —11(p)) — An(§ — Gn, @ — 1i(@))
=By (@i = Ti(@), A = An) + Du(p = T(p), A = An)

—

_R(’J’ éh) + R(.&v i — H(J))

Therefore,

/ (p — pn)m dz

T,

< C(I1@ = T(@) [y = (g2) 5+ 1P = D) | = (0,5
Hlos (Vi = (V) [ 1<) * (17 = Gullw () s
HIA = Xallzr(@)a—s + hz oy *{VG — Van}

Ll(e))'

We will be done once we show the following inequality:

15— é'h”W;vl(Q),w,fs + 1A = Xallzr @)e,—s + o Z oy *§VG — (VG Mz
ecéy,

< Clog()*.

==
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Again, we omit the easier proof of the bound
hZH% {VG— (V)L < Olog(h)§

In order to prove the remaining inequality, we will need the two following lemmas.
The proofs are very similar to the proofs of Lemmas B.11] and 3121 We leave the
details to the reader.

Lemma 3.16. If d; > 8h, then
g — §h||H1(Q H X — 5\hHL?(Qj)
Nj2=k | g-11F_ F T3
< RN E 4 (15 = Gl oy + 1A = Mally 2 o)
Lemma 3.17. If d; > 8h, then
||§7 §h||L2(Q;1)) + HS‘ - S‘h“Hzl(Q;l))
1-N/2—k, |5 o T3
< ChEYER(1G = Gl ) + 1A = Al o)
+Oh(||§_ g‘hHH}lL(Q;‘l)) + H)\ - )\hHLi(Q;‘L)))'
Let M be a real number to be determined later and let J be an integer such that
dy = Mh. Set E":é’fé’h and 7 = X — Aj,. Notice that

B wir @) e—s TPl @25 < Bt (s ,00—s T 1TILL (S0 05

J -
3 UE gy o + 1l 000
j=0

Using Holder’s inequality we can show

N/2+s

Bl wii9,).e—s TPl @))0,-s < Cd; (1Bl ay) + Iz 0))-

One also has

||EHWh (Sarn)ai—s T ITILL (Sarn) CMNZHRN2 (| B g (5,00 + 1P| L2 (8300)

< OMNPERNER(|G o) + [N o)
< MN/2+shN/2h||mfanQ(m)HHl(Q)
< OMN/s,

Here we used global error bounds and regularity results.
Therefore, we have

(3.27) 1E 11y —s + 1724 (00,5 < CMNZH 4 O

where
N s ~
= Zd PR =2 (B gy ) + 1722 (@)

If we apply Lemma BEL we get

i< CO(k — s) +OZdN/2 R 1B gy + 171 )
7=0



1320 J. GUZMAN

Now applying Lemma [3I7, we have
N/2— 1+s
Zd / HE‘HL (Q(l)) + ||THH 1(9(1)))
< CO(k— 5)(||EHW,1*1(Q) + 17|22 ()

J ~
N/2—14s,1-s 2 3
+C DAY R (B gy oo, + 171 o)
=0
<COk - 5)(||EHW,1=1(Q) + 17l Ly @)
— = C
N/2—1+4s,1— )
+Cd‘]/ o S(HEHH;IL(SMh + H HL2 (Sarn) )+ M’ﬂ
< CO(k = 8)([|Ellwr () + Iy @)

C _
+HOMNPTE

Therefore,
i< COk—s)+COk —5)(||E|l a0y + 17l @)

C
MN/2—1+S =5
+ + "
By choosing M sufficiently large we have
1< CO(k = 5)+ CO(k — ) (|| El [y 10y + 17l L () + MY/,

Substituting this bound into (321), we have

||E_)HW;’1(Q),9¢,—$ + H’FHL}L(Q) T,—s < CMN/2+S + C@(k )
(3.28) + 0Ok — 3) (1Bl + 171111 @)-
In particular, we see that
HEllwr @) + 17|y 0) < CMNTs 4 CO(k)
+COK) (|l gy + 171l L1 (0)-
Hence, by choosing M large enough so that CO(k) < 1/2, we get
1Bl + 17|23 ) < CMNZHe 4 CO(R).
By this inequality and ([B28]), we have
I\Ellwl 1@ya—s TIFILL9),2,—s
< OMN/?+5 4 0Ok — )+ CO(k — 5)O(k)
1 -
< Cl .
og()”.
This proves our result. i

The author would like to thank Bernardo Cockburn for many useful discussions.
The author thanks the referees for many useful suggestions which led to a better
presentation of the results.
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