Computations of Eisenstein series on Fuchsian groups
HTML articles powered by AMS MathViewer
- by Helen Avelin;
- Math. Comp. 77 (2008), 1779-1800
- DOI: https://doi.org/10.1090/S0025-5718-08-02092-9
- Published electronically: January 31, 2008
- PDF | Request permission
Abstract:
We present numerical investigations of the value distribution and distribution of Fourier coefficients of the Eisenstein series $E(z;s)$ on arithmetic and non-arithmetic Fuchsian groups. Our numerics indicate a Gaussian limit value distribution for a real-valued rotation of $E(z;s)$ as $\operatorname {Re} s=1/2$, $\operatorname {Im} s\to \infty$ and also, on non-arithmetic groups, a complex Gaussian limit distribution for $E(z;s)$ when $\operatorname {Re} s>1/2$ near $1/2$ and $\operatorname {Im} s\to \infty$, at least if we allow $\operatorname {Re} s\to 1/2$ at some rate. Furthermore, on non-arithmetic groups and for fixed $s$ with $\operatorname {Re} s \ge 1/2$ near $1/2$, our numerics indicate a Gaussian limit distribution for the appropriately normalized Fourier coefficients.References
- H. Avelin, On the deformation of cusp forms, U.U.D.M. Report 2003:8, Uppsala, 85 pp. http://www.math.uu.se/research/pub/Avelin2.pdf, 2003.
- —, Some computations used to prove that ${\Gamma }_{a,r}$ is a Fuchsian group, 2004, Maple-file http://www.math.uu.se/research/archive/avelin.
- Helen Avelin, Deformation of $\Gamma _0(5)$-cusp forms, Math. Comp. 76 (2007), no. 257, 361–384. MR 2261026, DOI 10.1090/S0025-5718-06-01911-9
- Lipman Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257–300. MR 348097, DOI 10.1112/blms/4.3.257
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), no. 12, 2083–2091. MR 489542
- Joseph Bernstein and Andre Reznikov, Analytic continuation of representations and estimates of automorphic forms, Ann. of Math. (2) 150 (1999), no. 1, 329–352. MR 1715328, DOI 10.2307/121105
- Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), no. 3, 497–502 (French, with English summary). MR 818831
- D. W. Farmer and S. Lemurell, Deformations of Maass forms, Math. Comp. 74 (2005), no. 252, 1967–1982. MR 2164106, DOI 10.1090/S0025-5718-05-01746-1
- Allan Gut, An intermediate course in probability, Springer-Verlag, New York, 1995. MR 1353911, DOI 10.1007/978-1-4757-2431-8
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,\,\textbf {R})$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983. MR 711197, DOI 10.1007/BFb0061302
- Dennis A. Hejhal, On eigenfunctions of the Laplacian for Hecke triangle groups, Emerging applications of number theory (Minneapolis, MN, 1996) IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 291–315. MR 1691537, DOI 10.1007/978-1-4612-1544-8_{1}1
- Heinz Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe, Math. Z. 92 (1966), 269–280 (German). MR 228437, DOI 10.1007/BF01112194
- Eberhard Hopf, Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc. 39 (1936), no. 2, 299–314. MR 1501848, DOI 10.1090/S0002-9947-1936-1501848-8
- Dennis A. Hejhal and Barry N. Rackner, On the topography of Maass waveforms for $\textrm {PSL}(2,\textbf {Z})$, Experiment. Math. 1 (1992), no. 4, 275–305. MR 1257286
- Dennis A. Hejhal and Andreas Strömbergsson, On quantum chaos and Maass waveforms of CM-type, Found. Phys. 31 (2001), no. 3, 519–533. Invited papers dedicated to Martin C. Gutzwiller, Part IV. MR 1839791, DOI 10.1023/A:1017521729782
- Elon Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163 (2006), no. 1, 165–219. MR 2195133, DOI 10.4007/annals.2006.163.165
- Wen Zhi Luo and Peter Sarnak, Quantum ergodicity of eigenfunctions on $\textrm {PSL}_2(\mathbf Z)\backslash \mathbf H^2$, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 207–237. MR 1361757
- Wenzhi Luo and Peter Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math. 56 (2003), no. 7, 874–891. Dedicated to the memory of Jürgen K. Moser. MR 1990480, DOI 10.1002/cpa.10078
- Wenzhi Luo and Peter Sarnak, Quantum variance for Hecke eigenforms, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 5, 769–799 (English, with English and French summaries). MR 2103474, DOI 10.1016/j.ansens.2004.08.001
- Carlos J. Moreno and Freydoon Shahidi, The fourth moment of Ramanujan $\tau$-function, Math. Ann. 266 (1983), no. 2, 233–239. MR 724740, DOI 10.1007/BF01458445
- R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of $\textrm {PSL}(2,\textbf {R})$, Invent. Math. 80 (1985), no. 2, 339–364. MR 788414, DOI 10.1007/BF01388610
- Peter Sarnak, Estimates for Rankin-Selberg $L$-functions and quantum unique ergodicity, J. Funct. Anal. 184 (2001), no. 2, 419–453. MR 1851004, DOI 10.1006/jfan.2001.3783
- A. Selberg, Göttingen Lectures on Harmonic Analysis, in Collected Papers, vol. 1, Springer-Verlag, 1989, pp. 626–674.
- A. I. Šnirel′man, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), no. 6(180), 181–182 (Russian). MR 402834
- A. Strömbergsson, On the Fourier coefficients of Eisenstein series for the hyperbolic plane, in preparation, 2005.
- —, Remarks on moments of divisor functions, personal communication, 2005.
- Holger Then, Maass cusp forms for large eigenvalues, Math. Comp. 74 (2005), no. 249, 363–381. MR 2085897, DOI 10.1090/S0025-5718-04-01658-8
- Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), no. 4, 919–941. MR 916129, DOI 10.1215/S0012-7094-87-05546-3
- Steven Zelditch, Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal. 97 (1991), no. 1, 1–49. MR 1105653, DOI 10.1016/0022-1236(91)90014-V
Bibliographic Information
- Helen Avelin
- Affiliation: Department of Mathematics, Uppsala University, S-751 06 Uppsala, Sweden
- Email: helen.avelin@math.uu.se
- Received by editor(s): September 21, 2006
- Received by editor(s) in revised form: May 16, 2007
- Published electronically: January 31, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 77 (2008), 1779-1800
- MSC (2000): Primary 11F72; Secondary 11F03, 11F06, 11Y35
- DOI: https://doi.org/10.1090/S0025-5718-08-02092-9
- MathSciNet review: 2398794