The zeros of Dedekind zeta functions and class numbers of CM-fields
HTML articles powered by AMS MathViewer
- by Geon-No Lee and Soun-Hi Kwon;
- Math. Comp. 77 (2008), 2437-2445
- DOI: https://doi.org/10.1090/S0025-5718-08-02093-0
- Published electronically: June 2, 2008
- PDF | Request permission
Abstract:
Let $F’/F$ be a finite normal extension of number fields with Galois group $Gal(F’/F)$. Let $\chi$ be an irreducible character of $Gal(F’/F)$ of degree greater than one and $L(s,\chi )$ the associated Artin $L$-function. Assuming the truth of Artin’s conjecture, we have explicitly determined a zero-free region about $1$ for $L(s,\chi )$. As an application we show that, for a CM-field $K$ of degree $2n$ with solvable normal closure over $\mathbb {Q}$, if $n \geq 370$ as well as $n \notin \{ 384, 400, 416, 448, 512 \}$, then the relative class number of $K$ is greater than one.References
- Sofiène Bessassi, Bounds for the degrees of CM-fields of class number one, Acta Arith. 106 (2003), no. 3, 213–245. MR 1957106, DOI 10.4064/aa106-3-2
- Jeffrey Hoffstein and Dinakar Ramakrishnan, Siegel zeros and cusp forms, Internat. Math. Res. Notices 6 (1995), 279–308. MR 1344349, DOI 10.1155/S1073792895000225
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- Geon-No Lee and Soun-Hi Kwon, CM-fields with relative class number one, Math. Comp. 75 (2006), no. 254, 997–1013. MR 2197004, DOI 10.1090/S0025-5718-05-01811-9
- F. Lemmermeyer, S. Louboutin, and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux 11 (1999), no. 2, 387–406 (English, with English and French summaries). MR 1745886
- Stéphane Louboutin, Explicit lower bounds for residues at $s=1$ of Dedekind zeta functions and relative class numbers of CM-fields, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3079–3098. MR 1974676, DOI 10.1090/S0002-9947-03-03313-0
- V. Kumar Murty, Modular forms and the Chebotarev density theorem. II, Analytic number theory (Kyoto, 1996) London Math. Soc. Lecture Note Ser., vol. 247, Cambridge Univ. Press, Cambridge, 1997, pp. 287–308. MR 1694997, DOI 10.1017/CBO9780511666179.019
- V. Kumar Murty, Class numbers of CM-fields with solvable normal closure, Compositio Math. 127 (2001), no. 3, 273–287. MR 1845038, DOI 10.1023/A:1017589432526
- J. Martinet, Character theory and Artin $L$-functions, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London-New York, 1977, pp. 1–87. MR 447187
- M. Ram Murty and V. Kumar Murty, Non-vanishing of $L$-functions and applications, Progress in Mathematics, vol. 157, Birkhäuser Verlag, Basel, 1997. MR 1482805, DOI 10.1007/978-3-0348-0274-1
- A. M. Odlyzko, On conductors and discriminants, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London-New York, 1977, pp. 377–407. MR 453701
- A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141 (English, with French summary). MR 1061762
- Georges Poitou, Minorations de discriminants (d’après A. M. Odlyzko), Séminaire Bourbaki, Vol. 1975/76, 28ème année, Lecture Notes in Math., Vol. 567, Springer, Berlin-New York, 1977, pp. Exp. No. 479, pp. 136–153. MR 435033
- Georges Poitou, Sur les petits discriminants, Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, pp. Exp. No. 6, 18 (French). MR 551335
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
Bibliographic Information
- Geon-No Lee
- Affiliation: Department of Mathematics, Korea University, 136-701, Seoul, Korea
- Email: thisknow@korea.ac.kr
- Soun-Hi Kwon
- Affiliation: Department of Mathematics Education, Korea University, 136-701, Seoul, Korea
- Email: sounhikwon@korea.ac.kr
- Received by editor(s): July 6, 2021
- Received by editor(s) in revised form: August 22, 2007
- Published electronically: June 2, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 77 (2008), 2437-2445
- MSC (2000): Primary 11R29, 11R42
- DOI: https://doi.org/10.1090/S0025-5718-08-02093-0
- MathSciNet review: 2429892