A mixed method for axisymmetric div-curl systems
HTML articles powered by AMS MathViewer
- by Dylan M. Copeland, Jayadeep Gopalakrishnan and Joseph E. Pasciak;
- Math. Comp. 77 (2008), 1941-1965
- DOI: https://doi.org/10.1090/S0025-5718-08-02102-9
- Published electronically: March 10, 2008
- PDF | Request permission
Abstract:
We present a mixed method for a three-dimensional axisymmetric div-curl system reduced to a two-dimensional computational domain via cylindrical coordinates. We show that when the meridian axisymmetric Maxwell problem is approximated by a mixed method using the lowest order Nédélec elements (for the vector variable) and linear elements (for the Lagrange multiplier), one obtains optimal error estimates in certain weighted Sobolev norms. The main ingredient of the analysis is a sequence of projectors in the weighted norms satisfying some commutativity properties.References
- C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823–864 (English, with English and French summaries). MR 1626990, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Multigrid in $H(\textrm {div})$ and $H(\textrm {curl})$, Numer. Math. 85 (2000), no. 2, 197–217. MR 1754719, DOI 10.1007/PL00005386
- F. Assous, P. Ciarlet Jr., and S. Labrunie, Theoretical tools to solve the axisymmetric Maxwell equations, Math. Methods Appl. Sci. 25 (2002), no. 1, 49–78. MR 1874449, DOI 10.1002/mma.279
- Zakaria Belhachmi, Christine Bernardi, and Simone Deparis, Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem, Numer. Math. 105 (2006), no. 2, 217–247. MR 2262757, DOI 10.1007/s00211-006-0039-9
- Christine Bernardi, Monique Dauge, and Yvon Maday, Spectral methods for axisymmetric domains, Series in Applied Mathematics (Paris), vol. 3, Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris; North-Holland, Amsterdam, 1999. Numerical algorithms and tests due to Mejdi Azaïez. MR 1693480
- Daniele Boffi, Fortin operator and discrete compactness for edge elements, Numer. Math. 87 (2000), no. 2, 229–246. MR 1804657, DOI 10.1007/s002110000182
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- O. Chinellato, The Complex-Symmetric Jacobi-Davidson Algorithm and its Application to the Computation of some Resonance Frequencies of Anisotropic Lossy Axisymmetric Cavities, Dissertation ETH No. 16243, Swiss Federal Institute of Technology, Zürich, 2005.
- Dylan M. Copeland and Joseph E. Pasciak, A least-squares method for axisymmetric div-curl systems, Numer. Linear Algebra Appl. 13 (2006), no. 9, 733–752. MR 2266104, DOI 10.1002/nla.495
- V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR 548867
- Jayadeep Gopalakrishnan and Joseph E. Pasciak, The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations, Math. Comp. 75 (2006), no. 256, 1697–1719. MR 2240631, DOI 10.1090/S0025-5718-06-01884-9
- Fumio Kikuchi, Numerical analysis of electrostatic and magnetostatic problems [translation of Sûgaku 42 (1990), no. 4, 332–345; MR1083943 (92c:78002)], Sugaku Expositions 6 (1993), no. 1, 33–51. Sugaku Expositions. MR 1222042
- Alois Kufner, Weighted Sobolev spaces, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. Translated from the Czech. MR 802206
- Patrick Lacoste and Jean Gay, A new family of finite elements for Maxwell-Fourier’s equations, Mathematical and numerical aspects of wave propagation phenomena (Strasbourg, 1991) SIAM, Philadelphia, PA, 1991, pp. 746–749. MR 1106041
- B. Mercier and G. Raugel, Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r$, $z$ et séries de Fourier en $\theta$, RAIRO Anal. Numér. 16 (1982), no. 4, 405–461 (French, with English summary). MR 684832
- Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447, DOI 10.1093/acprof:oso/9780198508885.001.0001
- J.-C. Nédélec, Mixed finite elements in $\textbf {R}^{3}$, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, DOI 10.1007/BF01396415
- Ch. Weber, A local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci. 2 (1980), no. 1, 12–25. MR 561375, DOI 10.1002/mma.1670020103
Bibliographic Information
- Dylan M. Copeland
- Affiliation: Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria
- Email: dylan.copeland@ricam.oeaw.ac.at
- Jayadeep Gopalakrishnan
- Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611–8105
- MR Author ID: 661361
- Email: jayg@math.ufl.edu
- Joseph E. Pasciak
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: pasciak@math.tamu.edu
- Received by editor(s): March 30, 2007
- Received by editor(s) in revised form: August 29, 2007
- Published electronically: March 10, 2008
- Additional Notes: This work was supported in part by the National Science Foundation through grants DMS-0713833, SCREMS-0619080, DMS-0311902, and DMS-0609544.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 77 (2008), 1941-1965
- MSC (2000): Primary 65F10, 65N30, 78M10, 74G15, 78A30, 35Q60
- DOI: https://doi.org/10.1090/S0025-5718-08-02102-9
- MathSciNet review: 2429870