Computing singular values of diagonally dominant matrices to high relative accuracy
HTML articles powered by AMS MathViewer
- by Qiang Ye;
- Math. Comp. 77 (2008), 2195-2230
- DOI: https://doi.org/10.1090/S0025-5718-08-02112-1
- Published electronically: May 5, 2008
- PDF | Request permission
Abstract:
For a (row) diagonally dominant matrix, if all of its off-diagonal entries and its diagonally dominant parts (which are defined for each row as the absolute value of the diagonal entry subtracted by the sum of the absolute values of off-diagonal entries in that row) are accurately known, we develop an algorithm that computes all the singular values, including zero ones if any, with relative errors in the order of the machine precision. When the matrix is also symmetric with positive diagonals (i.e. a symmetric positive semi-definite diagonally dominant matrix), our algorithm computes all eigenvalues to high relative accuracy. Rounding error analysis will be given and numerical examples will be presented to demonstrate the high relative accuracy of the algorithm.References
- Attahiru Sule Alfa, Jungong Xue, and Qiang Ye, Entrywise perturbation theory for diagonally dominant $M$-matrices with applications, Numer. Math. 90 (2002), no. 3, 401–414. MR 1884223, DOI 10.1007/s002110100289
- Attahiru Sule Alfa, Jungong Xue, and Qiang Ye, Accurate computation of the smallest eigenvalue of a diagonally dominant $M$-matrix, Math. Comp. 71 (2002), no. 237, 217–236. MR 1862996, DOI 10.1090/S0025-5718-01-01325-4
- Jesse Barlow and James Demmel, Computing accurate eigensystems of scaled diagonally dominant matrices, SIAM J. Numer. Anal. 27 (1990), no. 3, 762–791. MR 1041262, DOI 10.1137/0727045
- Percy Deift, James Demmel, Luen Chau Li, and Carlos Tomei, The bidiagonal singular value decomposition and Hamiltonian mechanics, SIAM J. Numer. Anal. 28 (1991), no. 5, 1463–1516. MR 1119279, DOI 10.1137/0728076
- James W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1463942, DOI 10.1137/1.9781611971446
- James Demmel, Accurate singular value decompositions of structured matrices, SIAM J. Matrix Anal. Appl. 21 (1999), no. 2, 562–580. MR 1742810, DOI 10.1137/S0895479897328716
- James W. Demmel and William Gragg, On computing accurate singular values and eigenvalues of matrices with acyclic graphs, Linear Algebra Appl. 185 (1993), 203–217. MR 1213179, DOI 10.1016/0024-3795(93)90213-8
- James Demmel, Ming Gu, Stanley Eisenstat, Ivan Slapničar, Krešimir Veselić, and Zlatko Drmač, Computing the singular value decomposition with high relative accuracy, Linear Algebra Appl. 299 (1999), no. 1-3, 21–80. MR 1723709, DOI 10.1016/S0024-3795(99)00134-2
- James Demmel and Yozo Hida, Accurate and efficient floating point summation, SIAM J. Sci. Comput. 25 (2003/04), no. 4, 1214–1248. MR 2045054, DOI 10.1137/S1064827502407627
- James Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci. Statist. Comput. 11 (1990), no. 5, 873–912. MR 1057146, DOI 10.1137/0911052
- James Demmel and Plamen Koev, Accurate SVDs of weakly diagonally dominant $M$-matrices, Numer. Math. 98 (2004), no. 1, 99–104. MR 2076055, DOI 10.1007/s00211-004-0527-8
- James Demmel and Plamen Koev, Accurate SVDs of polynomial Vandermonde matrices involving orthonormal polynomials, Linear Algebra Appl. 417 (2006), no. 2-3, 382–396. MR 2250320, DOI 10.1016/j.laa.2005.09.014
- James Demmel and Krešimir Veselić, Jacobi’s method is more accurate than $QR$, SIAM J. Matrix Anal. Appl. 13 (1992), no. 4, 1204–1245. MR 1182723, DOI 10.1137/0613074
- Froilán M. Dopico and Plamen Koev, Accurate symmetric rank revealing and eigendecompositions of symmetric structured matrices, SIAM J. Matrix Anal. Appl. 28 (2006), no. 4, 1126–1156. MR 2276557, DOI 10.1137/050633792
- K. Vince Fernando and Beresford N. Parlett, Accurate singular values and differential qd algorithms, Numer. Math. 67 (1994), no. 2, 191–229. MR 1262781, DOI 10.1007/s002110050024
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR 1002570
- Winfried K. Grassmann, Michael I. Taksar, and Daniel P. Heyman, Regenerative analysis and steady state distributions for Markov chains, Oper. Res. 33 (1985), no. 5, 1107–1116. MR 806921, DOI 10.1287/opre.33.5.1107
- Nicholas J. Higham, Accuracy and stability of numerical algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1368629
- W. Kahan, A survey of error analysis, Information processing 71 (Proc. IFIP Congr., Ljubljana, 1971) North-Holland, Amsterdam-London, 1972, pp. 1214–1239. MR 458845
- Plamen Koev, Accurate eigenvalues and SVDs of totally nonnegative matrices, SIAM J. Matrix Anal. Appl. 27 (2005), no. 1, 1–23. MR 2176803, DOI 10.1137/S0895479803438225
- Plamen Koev and Froilán Dopico, Accurate eigenvalues of certain sign regular matrices, Linear Algebra Appl. 424 (2007), no. 2-3, 435–447. MR 2329485, DOI 10.1016/j.laa.2007.02.012
- Roy Mathias, Accurate eigensystem computations by Jacobi methods, SIAM J. Matrix Anal. Appl. 16 (1995), no. 3, 977–1003. MR 1337657, DOI 10.1137/S089547989324820X
- Colm Art O’Cinneide, Entrywise perturbation theory and error analysis for Markov chains, Numer. Math. 65 (1993), no. 1, 109–120. MR 1217442, DOI 10.1007/BF01385743
- Colm Art O’Cinneide, Relative-error bounds for the $LU$ decomposition via the GTH algorithm, Numer. Math. 73 (1996), no. 4, 507–519. MR 1393178, DOI 10.1007/s002110050203
- J. M. Peña, LDU decompositions with L and U well conditioned, Electron. Trans. Numer. Anal. 18 (2004), 198–208. MR 2150769
- Richard S. Varga, Matrix iterative analysis, Second revised and expanded edition, Springer Series in Computational Mathematics, vol. 27, Springer-Verlag, Berlin, 2000. MR 1753713, DOI 10.1007/978-3-642-05156-2
- J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 184422
- Q. Ye, Relative Perturbation Bounds for Eigenvalues of Symmetric Positive Definite Diagonally Dominant Matrices, SIAM J. Matrix Anal. Appl., to appear.
Bibliographic Information
- Qiang Ye
- Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027
- MR Author ID: 237891
- Email: qye@ms.uky.edu
- Received by editor(s): April 9, 2007
- Received by editor(s) in revised form: October 4, 2007
- Published electronically: May 5, 2008
- Additional Notes: This research was supported in part by NSF under Grant DMS-0411502.
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 77 (2008), 2195-2230
- MSC (2000): Primary 65F18, 65F05
- DOI: https://doi.org/10.1090/S0025-5718-08-02112-1
- MathSciNet review: 2429881