Monotonicity of some functions involving the gamma and psi functions
HTML articles powered by AMS MathViewer
- by Stamatis Koumandos;
- Math. Comp. 77 (2008), 2261-2275
- DOI: https://doi.org/10.1090/S0025-5718-08-02140-6
- Published electronically: May 14, 2008
- PDF | Request permission
Abstract:
Let $L(x):=x-\frac {\Gamma (x+t)}{\Gamma (x+s)} x^{s-t+1}$, where $\Gamma (x)$ is Euler’s gamma function. We determine conditions for the numbers $s, t$ so that the function $\Phi (x):=-\frac {\Gamma (x+s)}{\Gamma (x+t)} x^{t-s-1} L^{\prime \prime }(x)$ is strongly completely monotonic on $(0, \infty )$. Through this result we obtain some inequalities involving the ratio of gamma functions and provide some applications in the context of trigonometric sum estimation. We also give several other examples of strongly completely monotonic functions defined in terms of $\Gamma$ and $\psi :=\Gamma ^{\prime }/\Gamma$ functions. Some limiting and particular cases are also considered.References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
- Horst Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373–389. MR 1388887, DOI 10.1090/S0025-5718-97-00807-7
- Horst Alzer, Christian Berg, and Stamatis Koumandos, On a conjecture of Clark and Ismail, J. Approx. Theory 134 (2005), no. 1, 102–113. MR 2137558, DOI 10.1016/j.jat.2004.02.008
- Horst Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), no. 2, 181–221. MR 2039096, DOI 10.1515/form.2004.009
- Horst Alzer and Christian Berg, Some classes of completely monotonic functions. II, Ramanujan J. 11 (2006), no. 2, 225–248. MR 2267677, DOI 10.1007/s11139-006-6510-5
- Horst Alzer and Arcadii Z. Grinshpan, Inequalities for the gamma and $q$-gamma functions, J. Approx. Theory 144 (2007), no. 1, 67–83. MR 2287377, DOI 10.1016/j.jat.2006.04.008
- G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1713–1723. MR 1264800, DOI 10.1090/S0002-9947-1995-1264800-3
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Necdet Batir, An interesting double inequality for Euler’s gamma function, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 4, Article 97, 3. MR 2112450
- Necdet Batir, Some new inequalities for gamma and polygamma functions, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 103, 9. MR 2178284
- Necdet Batir, On some properties of digamma and polygamma functions, J. Math. Anal. Appl. 328 (2007), no. 1, 452–465. MR 2285562, DOI 10.1016/j.jmaa.2006.05.065
- Joaquin Bustoz and Mourad E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), no. 176, 659–667. MR 856710, DOI 10.1090/S0025-5718-1986-0856710-6
- M. J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compositio Math. 7 (1939), 96–111 (French). MR 436
- Neven Elezović, Carla Giordano, and Josip Pec̆arić, The best bounds in Gautschi’s inequality, Math. Inequal. Appl. 3 (2000), no. 2, 239–252. MR 1749300, DOI 10.7153/mia-03-26
- Walter Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. and Phys. 38 (1959/60), 77–81. MR 103289, DOI 10.1002/sapm195938177
- C. Giordano, A. Laforgia, and J. Pečarić, Unified treatment of Gautschi-Kershaw type inequalities for the gamma function, Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), 1998, pp. 167–175. MR 1662692, DOI 10.1016/S0377-0427(98)00154-X
- Arcadii Z. Grinshpan and Mourad E. H. Ismail, Completely monotonic functions involving the gamma and $q$-gamma functions, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1153–1160. MR 2196051, DOI 10.1090/S0002-9939-05-08050-0
- H. van Haeringen, Completely monotonic and related functions, J. Math. Anal. Appl. 204 (1996), no. 2, 389–408. MR 1421454, DOI 10.1006/jmaa.1996.0443
- D. Kershaw, Some extensions of W. Gautschi’s inequalities for the gamma function, Math. Comp. 41 (1983), no. 164, 607–611. MR 717706, DOI 10.1090/S0025-5718-1983-0717706-5
- Stamatis Koumandos, Remarks on some completely monotonic functions, J. Math. Anal. Appl. 324 (2006), no. 2, 1458–1461. MR 2266574, DOI 10.1016/j.jmaa.2005.12.017
- Stamatis Koumandos and Stephan Ruscheweyh, Positive Gegenbauer polynomial sums and applications to starlike functions, Constr. Approx. 23 (2006), no. 2, 197–210. MR 2186305, DOI 10.1007/s00365-004-0584-3
- S. Koumandos and S. Ruscheweyh, On a conjecture for trigonometric sums and starlike functions. J. Approx. Theory, 149, no. 1, (2007), 42–58.
- Feng Qi, Monotonicity and logarithmic convexity for a class of elementary functions involving the exponential function, preprint.
- Feng Qi, A completely monotonic function involving divided differences of psi and polygamma functions and an application, preprint.
- S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp. 74 (2005), no. 250, 723–742. MR 2114645, DOI 10.1090/S0025-5718-04-01675-8
- S. Y. Trimble, Jim Wells, and F. T. Wright, Superadditive functions and a statistical application, SIAM J. Math. Anal. 20 (1989), no. 5, 1255–1259. MR 1009357, DOI 10.1137/0520082
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, NJ, 1941. MR 5923
Bibliographic Information
- Stamatis Koumandos
- Affiliation: Department of Mathematics and Statistics, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
- Email: skoumand@ucy.ac.cy
- Received by editor(s): June 5, 2007
- Published electronically: May 14, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 77 (2008), 2261-2275
- MSC (2000): Primary 33B15; Secondary 26D20, 26D15
- DOI: https://doi.org/10.1090/S0025-5718-08-02140-6
- MathSciNet review: 2429884