Divided differences of inverse functions and partitions of a convex polygon
HTML articles powered by AMS MathViewer
- by Michael S. Floater and Tom Lyche;
- Math. Comp. 77 (2008), 2295-2308
- DOI: https://doi.org/10.1090/S0025-5718-08-02144-3
- Published electronically: June 2, 2008
- PDF | Request permission
Abstract:
We derive a formula for an $n$-th order divided difference of the inverse of a function. The formula has a simple and surprising structure: it is a sum over partitions of a convex polygon with $n+1$ vertices. The formula provides a numerically stable method of computing divided differences of $k$-th roots. It also provides a new way of enumerating all partitions of a convex polygon of a certain type, i.e., with a specified number of triangles, quadrilaterals, and so on, which includes Catalan numbers as a special case.References
- Carl de Boor, Divided differences, Surv. Approx. Theory 1 (2005), 46–69. MR 2221566
- Nachum Dershowitz and Shmuel Zaks, Ordered trees and noncrossing partitions, Discrete Math. 62 (1986), no. 2, 215–218. MR 863045, DOI 10.1016/0012-365X(86)90120-2
- C. F. Faà di Bruno, Note sur une nouvelle formule de calcul differentiel, Quarterly J. Pure Appl. Math, 1 (1857), 359–360.
- A. Cayley, On the partition of a polygon, Proc. London Math. Soc. 22 (1890/91), 237–262.
- Michael S. Floater and Tom Lyche, Two chain rules for divided differences and Faà di Bruno’s formula, Math. Comp. 76 (2007), no. 258, 867–877. MR 2291840, DOI 10.1090/S0025-5718-06-01916-8
- Warren P. Johnson, The curious history of Faà di Bruno’s formula, Amer. Math. Monthly 109 (2002), no. 3, 217–234. MR 1903577, DOI 10.2307/2695352
- W. P. Johnson, Combinatorics of higher derivatives of inverses, Amer. Math. Monthly 109 (2002), 273–277.
- W. Kahan and R. J. Fateman, Symbolic computation of divided differences, ACM SIGSAM Bulletin 33 (1999), 7–28.
- G. Kreweras, Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), no. 4, 333–350 (French). MR 309747, DOI 10.1016/0012-365X(72)90041-6
- T. Popoviciu, Sur quelques propriétés des fonctions d’une ou de deux variables reélles, dissertation, presented at the Faculté des Sciences de Paris, published by Institutul de Arte Grafice “Ardealul” (Cluj, Romania), 1933.
- Tiberiu Popoviciu, Introduction à la théorie des différences divisées, Bull. Math. Soc. Roumaine Sci. 42 (1940), no. 1, 65–78 (French). MR 13171, DOI 10.1016/0016-0032(57)90875-x
- Józef H. Przytycki and Adam S. Sikora, Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers, J. Combin. Theory Ser. A 92 (2000), no. 1, 68–76. MR 1783940, DOI 10.1006/jcta.1999.3042
- Rodica Simion, Noncrossing partitions, Discrete Math. 217 (2000), no. 1-3, 367–409 (English, with English and French summaries). Formal power series and algebraic combinatorics (Vienna, 1997). MR 1766277, DOI 10.1016/S0012-365X(99)00273-3
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- J. F. Steffensen, Note on divided differences, Danske Vid. Selsk. Mat.-Fys. Medd. 17 (1939), no. 3, 12. MR 442, DOI 10.1016/0165-2125(93)90009-5
- Xing-hua Wang and He-yu Wang, On the divided difference form of Faà di Bruno’s formula, J. Comput. Math. 24 (2006), no. 4, 553–560. MR 2239550
Bibliographic Information
- Michael S. Floater
- Affiliation: Centre of Mathematics for Applications, Department of Informatics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway
- Tom Lyche
- Affiliation: Centre of Mathematics for Applications, Department of Informatics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway
- Received by editor(s): June 29, 2007
- Published electronically: June 2, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 77 (2008), 2295-2308
- MSC (2000): Primary 05A17, 05A18, 26A06, 26A24, 41A05, 65D05
- DOI: https://doi.org/10.1090/S0025-5718-08-02144-3
- MathSciNet review: 2429886